引用本文:
王朋, 张迪, 石林, 于梦梦. 分子结构对天然有机质模型化合物在碳纳米管上吸附的影响[J]. 环境化学, 2018, 37(10): 2291-2298
WANG Peng, ZHANG Di, SHI Lin, YU Mengmeng. Effect of molecular structure on the adsorption of natural organic matter surrogates on carbon nanotubes[J]. Environmental Chemistry, 2018, 37(10): 2291-2298

分子结构对天然有机质模型化合物在碳纳米管上吸附的影响
王朋, 张迪, 石林, 于梦梦
昆明理工大学, 环境科学与工程学院, 昆明, 650500
摘要:
天然有机物(NOM)是一类广泛分布的具有不同分子量和结构的物质,能够分散和稳定碳纳米管(CNTs).然而,NOM结构对CNTs吸附机理的影响尚不清楚.了解碳纳米管(CNTs)对有机化合物吸附的机理,对于CNTs及其对其他污染物的环境行为和风险的预测和评估至关重要.本文研究了3种天然有机物(Natural organic matter,NOM)替代物没食子酸(Gallic Acid,GA)、丹宁酸(Tannic Acid,TA)和十二烷基苯磺酸钠(SDBS)在CNTs上的吸附性能.TA分子在CNTs上的摩尔质量浓度吸附较低,与它较大的三维立体分子结构形成的空间位阻有关.具有平面结构的GA和柔性脂肪链结构的SDBS分子容易与CNT结合,表现出在CNTs有更高的吸附.研究结果表明,模型化合物的分子结构对其在CNTs上的吸附有很大的影响.本研究通过研究分子结构对天然有机质模型化合物在碳纳米管上吸附的影响,指出NOM的分子结构是影响其环境吸附行为重要的因素.
关键词:    天然有机物替代物    分子结构    碳纳米管    吸附   
Effect of molecular structure on the adsorption of natural organic matter surrogates on carbon nanotubes
WANG Peng, ZHANG Di, SHI Lin, YU Mengmeng
Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, China
Abstract:
Natural organic matters (NOM) with diverse molecular weights and structures are ubiquitous in the environment. NOM-mediated dispersion and stabilization of carbon nanotubes (CNTs) has been reported in previous studies. However, the effects of the NOM structures on the adsorption mechanism of CNTs are not clear. Understanding the sorption mechanisms of organic compounds on CNTs is a crucial process for assessing their environmental behavior and risks. In this study, gallic acid (GA), tannic acid (TA) and sodium dodecyl benzene sulfonate (SDBS) were chosen as the structural surrogates of NOM. Adsorption of TA on CNT was lower than the other two surrogates, prohably due to its structural rigidity. SDBS with a flexible long chain structure and GA with aplanar structure showed higher adsorption on CNTs surface due to alkane chain entanglement and subsequent surface alignment. The results showed that the molecular structure of the model compounds is dominant for their adsorption on CNTs. Therefore, molecular morphology of NOM must be considered regarding NOM mediated environmental behavior of CNTs.
Key words:    Natural organic matter surrogates    molecular structure    CNTs    adsorption   
收稿日期: 2018-01-25
基金项目: 国家自然科学基金(41663014,41303093)资助.
张迪,Tel:15887215550,E-mail:zhangdi2002113@sina.com
相关功能
PDF(1450KB) Free
打印本文
加入收藏夹
把本文推荐给朋友
作者相关文章
王朋  在本刊中的所有文章
张迪  在本刊中的所有文章
石林  在本刊中的所有文章
于梦梦  在本刊中的所有文章

参考文献:
[1] UPADHYAYULA V K,DENG S,MITCHELL M C,et al. Application of carbon nanotube technology for removal of contaminants in drinking water:A review[J]. Science of the Total Environment, 2009, 408:1-13.
[2] MAUTER M S,ELIMELECH M. Environmental applications of carbon-based nanomaterials[J]. Environmental Science & Technology, 2008, 42:5843-5859.
[3] YANG K,YI Z,JING Q,et al. Sonication-assisted dispersion of carbon nanotubes in aqueous solutions of the anionic surfactant SDBS:The role of sonication energy[J]. Chinese Science Bulletin, 2013, 58:2082-2090.
[4] KLAINE S J,ALVAREZ P J,BATLEY G E,et al. Nanomaterials in the environment:behavior, fate, bioavailability, and effects[J]. Environmental Toxicology and Chemistry, 2008, 27:1825-1851.
[5] YANG K,XING B. Adsorption of fulvic acid by carbon nanotubes from water[J]. Environmental Pollution, 2009, 157:1095-1100.
[6] LIN D,XING B. Tannic acid adsorption and its role for stabilizing carbon nanotube suspensions[J]. Environmental Science & Technology, 2008, 42:5917-5923.
[7] HYUNG H,KIM J H. Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes:Effect of NOM characteristics and water quality parameters[J]. Environmental Science & Technology, 2008, 42:4416-4421.
[8] PAN B,XING B. Adsorption Mechanisms of organic chemicals on carbon nanotubes[J]. Environmental Science & Technology, 2008, 42:9005-9013.
[9] LIN D,XING B. Adsorption of phenolic compounds by carbon nanotubes:Role of aromaticity and substitution of hydroxyl groups[J]. Environmental Science & Technology, 2008, 42:7254-7259.
[10] CERTINI G,SCALENGHE R,UGOLINI F C. Soils:basic concepts and future challenges[M]. Cambridge University Press Cambridge, UK. 2006.
[11] KIM K T,EDGINGTON A J,KLAINE S J,et al. Influence of multiwalled carbon nanotubes dispersed in natural organic matter on speciation and bioavailability of copper[J]. Environmental Science & Technology, 2009, 43:8979-8984.
[12] ZHANG D,PAN B,COOK R L,et al. Multi-walled carbon nanotube dispersion by the adsorbed humic acids with different chemical structures[J]. Environmental Pollution, 2015, 196:292-299.
[13] LIU F F,WANG S G,FAN J L,et al. Adsorption of natural organic matter surrogates from aqueous solution by multiwalled carbon nanotubes[J]. The Journal of Physical Chemistry C, 2012, 116:25783-25789.
[14] CHEN C L,WANG X K,NAGATSU M. Europium adsorption on multiwall carbon nanotube/iron oxide magnetic composite in the presence of polyacrylic acid[J]. Environmental Science & Technology, 2009, 43:2362-2367.
[15] CARTER M C,KILDUFF J E,WEBER W J. Site energy distribution analysis of preloaded adsorbents[J]. Environmental Science & Technology, 1995, 29:1773-1780.
[16] SHEN X,GUO X,ZHANG M,et al. Sorption mechanisms of organic compounds by carbonaceous materials:site energy distribution consideration[J]. Environmental Science & Technology, 2015, 49:4894-4902.
[17] WANG Z Y,YU X D,PAN B,et al. Norfloxacin sorption and its thermodynamics on surface-modified carbon nanotubes[J]. Environ Science & Technology, 2010, 44:978-984.
[18] KIM U J,FURTADO C A,LIU X M,et al. Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes[J]. Journal of the American Chemical Society, 2005, 127:15437-15445.
[19] BOTTI S,LAURENZI S,MEZI L,et al. Surface-enhanced raman spectroscopy characterisation of functionalised multi-walled carbon nanotubes[J]. Physical Chemistry Chemical Physics:PCCP, 2015, 17:21373-21380.
[20] REBELO S L,GUEDES A,SZEFCZYK M E,et al. Progress in the raman spectra analysis of covalently functionalized multiwalled carbon nanotubes:unraveling disorder in graphitic materials[J]. Physical Chemistry Chemical Physics:PCCP, 2016, 18:12784-12796.
[21] 杨晓磊,张迪,李浩,等. 单宁酸和没食子酸对纳米碳管悬浮的影响[J]. 环境化学,2014, 33(1):123-128. YANG X L,ZHANG D,LI H,et al. Effect of tannic acid and gallic acid on suspension of carbon nanotubes[J]. Environmental Chemistry, 2014, 33(1):123-128(in Chinese).
[22] WANG X L,SHU L,WANG Y Q,et al. Sorption of peat humic acids to multi-walled carbon nanotubes[J]. Environmental Science & Technology, 2011, 45:9276-9283.
[23] ZHANG D,PAN B,WU M,et al. Cosorption of organic chemicals with different properties:Their shared and different sorption sites[J]. Environmental Pollution, 2012, 160:178-184.
相关文献:
1.张良静, 顾慧燕, 毕二平.含特殊官能团有机物分配系数预测的多参数线性自由能关系(PP-LFERs)研究[J]. 环境化学, 2018,37(5): 1045-1053
2.杨吉睿, 孙红文.多壁碳纳米管对林丹的吸附和催化转化[J]. 环境化学, 2016,35(4): 629-638
3.堵锡华, 王超.碳纳米管吸附能力的神经网络理论模型[J]. 环境化学, 2016,35(7): 1445-1451
4.王磊, 刘娜, 徐旭, 张承东.碳纳米管吸附阿特拉津对其生物可利用性的影响[J]. 环境化学, 2013,32(4): 577-583
5.陈广超, 李雪花, 王壮, 陈景文.基于密度泛函理论模拟单壁碳纳米管对五种核酸碱基的吸附[J]. 环境化学, 2013,32(7): 1117-1122
6.马杰, 虞琳琳, 金路, 袁志文, 陈君红.改性碳纳米管原始样品吸附亚甲基蓝的性能研究 [J]. 环境化学, 2012,31(5): 646-652
7.周露, 陈君红, 于飞, 袁志文, 马杰.芬顿试剂法制备磁性碳纳米管及其对亚甲基蓝的吸附性能 [J]. 环境化学, 2012,31(5): 669-676
8.周艳萍, 温蓓, 胡晓宇, 张淑贞.全氟化合物在阳离子表面活性剂改性碳纳米管上的吸附[J]. 环境化学, 2012,31(1): 43-49
9.宋琪, 吴文伶, 孙红文.离子型表面活性剂对菲在碳纳米管上吸附的影响[J]. 环境化学, 2012,31(11): 1676-1682
10.周艳萍, 温蓓, 胡晓宇, 张淑贞.全氟化合物在碳纳米管上的吸附研究[J]. 环境化学, 2011,30(12): 2003-2008
11.陈光才, 沈秀娥.碳纳米管对污染物的吸附及其在土水环境中的迁移行为[J]. 环境化学, 2010,29(2): 159-168
12.李丽, 于志强, 盛国英, 傅家谟, 彭平安, 黄伟林.分子结构在腐殖酸对菲吸附行为中的影响[J]. 环境化学, 2004,23(4): 381-386