引用本文:
刘恩秦, 黄思伟, 邹紫莹, 王齐, 张轶, 丛燕青. NF-Bi2O3/SBA可见光催化还原Cr(Ⅵ)[J]. 环境化学, 2018, 37(10): 2299-2304
LIU Enqin, HUANG Siwei, ZOU Ziying, WANG Qi, ZHANG Yi, CONG Yanqing. Photocatalytic reduction of Cr(Ⅵ) by NF-Bi2O3/SBA under visible light[J]. Environmental Chemistry, 2018, 37(10): 2299-2304

NF-Bi2O3/SBA可见光催化还原Cr(Ⅵ)
刘恩秦, 黄思伟, 邹紫莹, 王齐, 张轶, 丛燕青
浙江工商大学环境科学与工程学院, 杭州, 310018
摘要:
本文以分子筛SBA-15为载体,预先吸附Bi (NO33,然后与NH4F均匀混合,一步煅烧法制备了可见光响应型NF-Bi2O3/SBA.研究发现,高温煅烧时,吸附在SBA上的Bi (NO33分解形成Bi2O3.与此同时,NH4F分解生成的HF优先刻蚀SBA,生成的NH3优先掺入Bi2O3晶格.Bi2O3负载在SBA-15上比表面积显著提升,共存NH4F能对Bi2O3进行N、F共掺杂改性,进一步窄化带隙,提升可见光响应,并调控Bi2O3的晶面结构,得到均匀片状的NF-Bi2O3,最终促进电子-空穴对的分离和传递.与Bi2O3、NF-Bi2O3和Bi2O3/SBA相比,NF-Bi2O3/SBA具有最佳的可见光催化活性,光催化还原Cr (Ⅵ)的速率常数是Bi2O3体系的6.3倍.
关键词:    Bi2O3    SBA-15    N、F共掺杂    可见光催化    Cr (Ⅵ)   
Photocatalytic reduction of Cr(Ⅵ) by NF-Bi2O3/SBA under visible light
LIU Enqin, HUANG Siwei, ZOU Ziying, WANG Qi, ZHANG Yi, CONG Yanqing
School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
Abstract:
In this paper, Bi(NO3)3 was pre-adsorbed on molecular sieve SBA-15, followed by uniform mixing with NH4F. After one-step calcination, visible-light-responsive NF-Bi2O3/SBA was obtained. It was found that Bi(NO3)3 pre-adsorbed on SBA decomposed into Bi2O3 when calcined at high temperature. Meanwhile, HF generated by NH4F decomposition preferentially etched SBA, while NH3 was preferentially doped into the lattice of Bi2O3. The specific surface area was significantly increased after loading Bi2O3 onto SBA-15. The coexistence of NH4F led to N, F co-doping of Bi2O3 with narrowed band-gap. In this way, the visible-light-response was enhanced, and the crystal structure of NF-Bi2O3 can be tuned with uniform sheet shape. Finally, the separation and transfer of photo-generated electron-hole pairs were promoted. Compared with Bi2O3, NF-Bi2O3 and Bi2O3/SBA, NF-Bi2O3/SBA obtained optimal visible light activity, and the photocatalytic rate for Cr(Ⅵ) reduction was 6.3 times that on Bi2O3.
Key words:    Bi2O3    SBA-15    N-F codoping    visible-light photocatalysis    Cr (Ⅵ)   
收稿日期: 2017-12-18
基金项目: 国家自然科学基金(21477114),浙江省自然科学基金(LR18B070001,Y18B060003和LY16B060001)和国家级大学生创新创业训练计划(201710353035)资助.
王齐,Tel:0571-28008211,E-mail:wangqi8327@zjgsu.edu.cn;丛燕青,E-mail:yqcong@hotmail.com
相关功能
PDF(9484KB) Free
打印本文
加入收藏夹
把本文推荐给朋友
作者相关文章
刘恩秦  在本刊中的所有文章
黄思伟  在本刊中的所有文章
邹紫莹  在本刊中的所有文章
王齐  在本刊中的所有文章
张轶  在本刊中的所有文章
丛燕青  在本刊中的所有文章

参考文献:
[1] KOTAS J, STASICKA Z. Chromium occurrence in the environment and methods of its speciation[J]. Environmental Pollution, 2000, 107:263-283.
[2] FUJISHIMA A, ZHANG X, TRYK D. TiO2 photocatalysis and related surface phenomena[J]. Surface Science Reports, 2008, 63:515-582.
[3] 杨静, 崔世海, 陈慧慧, 等.磁载纳米TiO2复合材料光催化材料的研究进展[J].环境化学, 2014, 33(11):1930-1935. YANG J, CUI S H, CHEN H H, et al. Research progress on magnetic TiO2 composite nano-photocatalysts[J]. Environmental Chemistry, 2014, 33(11):1930-1935(in Chinese).
[4] PAOLA A D, GARCIA L E, MARCHI G, et al. A survey of photocatalytic materials for environmental remediation[J].Journal of Hazardous Materials, 2012,211:3-29.
[5] CHEN C, MA W, ZHAO J. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation[J]. Chemical Society Review, 2010, 39:4206-4213.
[6] 熊世威, 方艳芬, 黄应平, 等. BiPO4纳米棒制备及光催化降解罗丹明B[J]. 环境化学, 2013, 32(10):1856-1862. XIONG S W, FANG Y F,HUANG Y P, et al. BiPO4 nanorods preparation and photocatalytic degradation of rhodamine B[J]. Environmental Chemistry, 2013, 32(10):1856-1862(in Chinese).
[7] SHAN L, WANG G, LIU L, et al. Band alignment and enhanced photocatalytic activation for α-Bi2O3/BiOCl(001) core-shell heterojunction[J]. Journal of Molecular Catalysis A:Chemical, 2015, 406:145-151.
[8] CHENG H, HUANG B, DAI Y. Engineering BiOX (X=Cl, Br, I) nanostructures for highly efficient photocatalytic applications[J]. Nanoscale, 2014, 6:2009-2026.
[9] HAN S, LI J, YANG K, LIN J. Fabrication of a β-Bi2O3/BiOI heterojunction and its efficient photocatalysis for organic dye removal[J]. Chinese Journal of Catalysis, 2015, 36:2119-2126.
[10] WANG Q, JIAO D, LIAN J, et al. Preparation of efficient visible-light-driven BiOBr/Bi2O3 heterojunction composite with enhanced photocatalytic activities[J]. Journal of Alloys and Compounds, 2015, 649:474-482.
[11] CHU S, YANG C, NIU C, et al. Synthesis of Bi-Bi2O3/C hybrid nanocomposite as a high performance photocatalyst[J]. Materials Letters, 2014, 136:366-370.
[12] 卢远刚, 杨迎春, 叶芝祥, 等. 氮掺杂Bi2O3光催化剂的制备及其可见光催化性能[J]. 无机材料学报2012, 27(6):643-648. LU Y G, YANG Y C, YE Z X, et al. Preparation of N-doped Bi2O3 photocatalyst and its visible light catalytic performance[J]. Inorganic Materials, 2012, 27(6):643-648(in Chinese).
[13] SUDRAJATH. Template-free, simple fabrication of C/N-doped Bi2O3 nanospheres with appreciable photocatalytic activity under visible light[J]. Superlattices and Microstructures, 2017, 109:229-239.
[14] WANG Q, ZHU N X, LIU E Q, et al. Highly enhanced photoelectrocatalytic properties by α-Fe2O3 modified NF-TiO2 pyramids with dominant (101) facets[J]. Electrochimica Acta, 2016, 216:266-275.
[15] 马骕骦, 潘兆琪, 陈伟锐, 等.铈负载SBA-15分子筛催化臭氧氧化水中环丙沙星[J]. 环境化学, 2016, 35(5):910-916. MA X J; PAN Z Q; CHEN W R, et al. Catalytic ozonation of ciprofloxacin over cerium supported on SBA-15 mesoporous molecular sieves[J]. Environmental Chemistry, 2016, 35(5):910-916(in Chinese).
[16] WANG Q, SHI X D, LIU E Q, et al. Facile synthesis of AgI/BiOI-Bi2O3 multi-heterojunctions with high visible light activity for Cr(Ⅵ) reduction[J]. Journal of Hazardous Materials, 2016, 317:8-16.
[17] ZHANG L, WANG W, YANG J, et al. Sonochemical synthesis of nanocrystallite Bi2O3 as a visible-light-driven photocatalyst[J]. Applied Catalysis A, 2006, 308:105-110.
[18] WANG Q, SHI X D, XU J J, et al. Highly enhanced photocatalytic reduction of Cr(Ⅵ) on AgI/TiO2 under visible light irradiation:Influence of calcination temperature[J]. Journal of Hazardous Materials, 2016, 307:213-220.