引用本文:
韩浩, 杜青平, 刘倩, 郑莉, 许燕滨, 苏俊朋, 张国庆, 石瑛. 蛋白核小球藻对厌氧发酵沼液净化及资源化利用[J]. 环境化学, 2018, 37(10): 2315-2321
HAN Hao, DU Qingping, LIU Qian, ZHNEG Li, XU Yanbin, SU Junpeng, ZHANG Guoqing, SHI Ying. Advanced treatment process for anaerobic digestion effluent of livestock breeding wastewater with resource recovery by microalgae Chlorella pyrenoidosa[J]. Environmental Chemistry, 2018, 37(10): 2315-2321

蛋白核小球藻对厌氧发酵沼液净化及资源化利用
韩浩1, 杜青平1, 刘倩1, 郑莉1, 许燕滨1, 苏俊朋1, 张国庆2, 石瑛3
1. 广东工业大学环境科学与工程学院, 广州, 510006;
2. 佛山市顺德区都围科技环保工程有限公司, 佛山, 528300;
3. 太原师范学院生物系, 太原, 030031
摘要:
以养猪厂厌氧发酵沼液为研究对象,研究蛋白核小球藻对实际厌氧发酵沼液水质净化效果及资源化利用的可行性.结果表明,蛋白核小球藻在初始COD浓度为350 mg·L-1的厌氧发酵沼液中生长最好,培养一个周期(18 d)后获得生物量达到2.75 g·L-1,在COD浓度为450 mg·L-1的厌氧发酵沼液中,藻细胞生长受到一定抑制.在最佳初始COD浓度为350 mg·L-1厌氧发酵沼液条件下培养蛋白核小球藻,厌氧发酵沼液中COD、氨氮、硝态氮、亚硝态氮、总磷、磷酸盐的去除率分别为:83%、75%、95%、78%、71%、100%,且获得藻细胞的油脂含量最高,达到藻细胞干重的29%,藻细胞中除了细胞组分脂肪酸外,还积累了其他储备脂肪酸.藻细胞中总饱和脂肪酸和不饱和脂肪酸所占比例分别为42.6%、57.4%,油脂所含脂肪酸组分碳链长度主要集中在C16-C18.结果表明,利用畜禽养殖厌氧发酵沼液在适当的条件下培养蛋白核小球藻,能够降低沼液中的氮磷,积累碳生成油脂,是一种潜在的养殖厌氧发酵沼液深度处理和资源再利用的途径.
关键词:    蛋白核小球藻    厌氧发酵沼液    脱氮除磷    含油率    脂肪酸   
Advanced treatment process for anaerobic digestion effluent of livestock breeding wastewater with resource recovery by microalgae Chlorella pyrenoidosa
HAN Hao1, DU Qingping1, LIU Qian1, ZHNEG Li1, XU Yanbin1, SU Junpeng1, ZHANG Guoqing2, SHI Ying3
1. School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China;
2. Shunde Dowell technological & Environmental Engineering Co. Ltd., Foshan, 528300, China;
3. Department of biology, Taiyuan Normal University, Taiyuan, 030031, China
Abstract:
For the dual purposes of wastewater treatment and resource recovery, in the study, microalgae Chlorella pyrenoidosa (C. pyrenoidosa) was used to treat anaerobic digestion effluent from pig farm wastewater and produce microbial lipid, which could be further converted to biodiesel. The results showed that the optimal initial COD (chemical oxygen demand) of anaerobic digestion effluent for C. pyrenoidosa cultivation was 350 mg·L-1, under which the growth of microalgae reached their stationary phase in 18 days with the biomass production of 2.75 g·L-1. When the initial COD of anaerobic digestion effluent rose to 450 mg·L-1, the growth of microalgae was inhibited. Under optimal initial COD condition, the removal efficiencies of COD, ammonia, nitrate, nitrite, and total phosphorus in anaerobic digestion effluent by C. pyrenoidosa were 83%, 75%, 95%, 78%, 71% and 100%, respectively. The highest lipid content of the dry algae cells (29%) was also achieved when initial COD was 350 mg·L-1. A lot of fatty acids were accumulated in the algal cells as lipid droplet besides the fatty acids as cellular component. The contents of total saturated fatty acids and unsaturated fatty acids in algae cells were 42.6% and 57.4%, respectively. And most fatty acids produced have long carbon chains with 16-18 carbons, which are suitable to be further converted to biodiesel. The results showed that C. pyrenoidosa had good potential in the treatment of anaerobic digestion effluent of wastewater from livestock and poultry breeding industry. It could not only remove nitrogen and phosphorus in the wastewater effectively but also produce high quality microbial lipid. It is a promising advanced treatment process for anaerobic digestion effluent with resource recovery from wastewater.
Key words:    Chlorella pyrenoidosa    anaerobic digestion effluent    removal of nitrogen and phosphorus    oil content    microbial lipid   
收稿日期: 2017-12-28
基金项目: 广东省科技计划项目(2013B020600007,2015A020215031),广东省应用型科技研发专项资金项目(2016B020240003),国际科技合作计划(2011DFB91560)和山西省"1331工程"重点创新团队建设计划资助.
杜青平,Tel:13533081194,E-mail:qpdu2008@126.com
相关功能
PDF(1422KB) Free
打印本文
加入收藏夹
把本文推荐给朋友
作者相关文章
韩浩  在本刊中的所有文章
杜青平  在本刊中的所有文章
刘倩  在本刊中的所有文章
郑莉  在本刊中的所有文章
许燕滨  在本刊中的所有文章
苏俊朋  在本刊中的所有文章
张国庆  在本刊中的所有文章
石瑛  在本刊中的所有文章

参考文献:
[1] 中华人民共和国环境保护部,中华人民共和国农业部. 全国畜禽养殖污染防治"十二五"规划[R]. 2012. Ministry of environmental protection of the people's Republic of China, Ministry of agriculture of the people's Republic of China. The "12th five-year" plan for the prevention and control of livestock and poultry breeding pollution in China[R]. 2012(in Chinese).
[2] 曹汝坤, 陈灏, 赵玉柱. 沼液资源化利用现状与新技术展望[J]. 中国沼气, 2015, 33(2):42-50. CAO R K, CHEN H, ZHAO Y Z. Resource utilization of biogas slurry:Current status and future prospects[J]. China Biogas, 2015, 33(2):42-50(in Chinese).
[3] WANG H, XU J, SHENG L, et al. Effect of addition of biogas slurry for anaerobic fermentation of deer manure on biogas production[C]. International Conference on Sustainable Energy and Environmental Protection, 2017:13-22.
[4] 彭智平,李文英,杨少海,等.微生物菌剂处理猪场沼液效果研究[J].中国农学通报,2011,27(1):366-369. PENG Z, LI W Y, YANG S H, et al. Study on treatment of piggery biogas slurry with microorganism preparation[J]. Chinese Agricultural Science Bulletin, 2011, 27(1):366-369(in Chinese).
[5] DUONG V T, AHMED F, THOMAS-HALL S R, et al. High protein-and high lipid-producing microalgae from northern Australia as potential feedstock for animal feed and biodiesel[J]. Frontiers in Bioengineering & Biotechnology, 2015, 3:53-54.
[6] SOYDEMIR G, KERISSEN U D, SEN U, et al. Biodiesel production potential of mixed microalgal culture grown in domestic wastewater[J]. Bioprocess & Biosystems Engineering, 2016, 39(1):45-51.
[7] HYUNUK C, YOUNGMO K, YUNNAM C, et al. Effects of pH control and concentration on microbial oil production from Chlorella vulgaris cultivated in the effluent of a low-cost organic waste fermentation system producing volatile fatty acids[J]. Bioresource Technology, 2015, 184:245-250.
[8] RUIZ J, ARBIB Z, ALVAREZ-DIAZ P D, et al. Influence of light presence and biomass concentration on nutrient kinetic removal from urban wastewater by Scenedesmus obliquus[J].Journal of Biotechnology, 2014, 178:32-33.
[9] LIN H, PEI H, HU W, et al. Nutrient removal and lipid accumulation properties of newly isolated microalgal strains[J]. Bioresource Technology, 2014, 165(8):38-39.
[10] WANG Y, HO S H, CHENG C L, et al. Perspectives on the feasibility of using microalgae for industrial wastewater treatment[J]. Bioresource Technology, 2016, 222:485-486.
[11] WANG M, KUO-DAHAB W C, DOLAN S, et al. Kinetics of nutrient removal and expression of extracellular polymeric substances of the microalgae, Chlorella sp. and Micractinium sp., in wastewater treatment[J]. Bioresource Technology, 2014, 154:131-132.
[12] MARJAKANGAS J M, CHEN C Y, LAKANIEMI A M, et al. Simultaneous nutrient removal and lipid production with Chlorella vulgaris on sterilized and non-sterilized anaerobically pretreated piggery wastewater[J].Biochemical Engineering Journal, 2015, 103:177-184.
[13] STAINIER R Y, KUNISAWA R, MANDEL M, et al. Purification and properties of unicellular blue-green algae (order Chroococcales)[J]. Bacteriological Reviews, 1971, 35(2):171-205.
[14] 张强,邹华,余云龙,等.小球藻处理养殖废水的初步研究[J].上海环境科学,2011,30(6):249-253. ZHANG Q,LI W Y,YU Y L, et al. An approach to the treatment of livestock farming wastewater by chlorella vulgaris[J]. Shanghai Environmental Sciences, 2011, 30(6):249-253(in Chinese).
[15] 赵凤敏, 梅帅, 曹有福, 等. 基于沼液的培养基及产油小球藻藻种选育[J]. 环境科学, 2014, 35(6):2300-2304. ZHAO F M, MEI S, CAO Y F, et al. Culture medium based on biogas slurry and breeding of oil chlorella[J]. Environmental Science, 2014, 35(6):2300-2304(in Chinese).
[16] SONG M, PEI H, HU W, et al. Evaluation of the potential of 10 microalgal strains for biodiesel production[J]. Bioresource Technology, 2013, 141(4):245-251.
[17] KIM G Y, YUN Y M, SHIN H S, et al. Scenedesmus-based treatment of nitrogen and phosphorus from effluent of anaerobic digester and bio-oil production[J]. Bioresource Technology, 2015, 196:235-236.
[18] 梅帅, 赵凤敏, 曹有福, 等. 三种小球藻生物柴油品质指标评价[J]. 农业工程学报, 2013, 29(15):229-235. MEI S, ZHAO F M, CAO Y F, et al. Evaluation of quality items for biodiesel made from three kinds of Chlorella vulgaris[J]. Transactions of the CSAE, 2013, 29(15):229-235(in Chinese).
[19] 陈卫民. 亚硝酸盐对铜绿微囊藻生理特性的影响[D]. 天津:南开大学, 2009. CHEN W M. Effects of nitrite on physiological characteristics of Microcystis aeruginosa[D]. Tianjing:Nankai University, 2009(in Chinese).
[20] WANG S, ZHU J, DAI L, et al. A novel process on lipid extraction from microalgae for biodiesel production[J]. Energy, 2016, 115:963-968.
[21] HUANG G, CHEN F, WEI D, et al. Biodiesel production by microalgal biotechnology[J]. Applied Energy, 2010, 87:38-46.
[22] 刘振强, 陆向红, 晏荣军, 等. 高密度高含油率微藻培养研究进展[J]. 农业工程学报, 2011, 27(S1):210-217. LIU Z Q, LU X H, YAN R J, et al. Advances on technology of high density and high lipid microalgae culture[J]. Transactions of the CSAE, 2011, 27(Supp.1):210-217(in Chinese).
[23] PINHO D M M, OLIVEIRA R S, SANTOS V M L D, et al. Evaluating the potential of biodiesel production through microalgae farming in photobioreactor and high rate ponds from wastewater treatment[J]. Journal of the Brazilian Chemical Society, 2017, 28(12):2430-2431.