引用本文:
涂耀仁, 蒲雅丽, 詹丁山, 洪郁翔, 段艳平. 以同步辐射X射线解析Sb(Ⅲ)及Sb(V)在铁氧磁体尖晶石的吸附行为[J]. 环境化学, 2018, 37(12): 2603-2612
TU Yaojen, PU Yali, CHAN Tingshan, HUNG Yuhsiang, DUAN Yanping. Adsorption of antimony onto magnetic nano-ferrite: X-ray absorption spectroscopy study[J]. Environmental Chemistry, 2018, 37(12): 2603-2612

以同步辐射X射线解析Sb(Ⅲ)及Sb(V)在铁氧磁体尖晶石的吸附行为
涂耀仁1,2, 蒲雅丽2,4, 詹丁山3, 洪郁翔3, 段艳平1,2
1. 上海师范大学城市发展研究院, 上海, 200234;
2. 上海师范大学环境与地理科学学院, 上海, 200234;
3. 台湾新竹同步辐射中心, 新竹, 30076;
4. 上海市开发区协会, 上海, 200233
摘要:
Sb对环境和人体有严重的危害性,有必要发现一些新型材料,能够快速且高效地去除水体中的Sb并将高毒性的Sb(Ⅲ)有效的氧化成较低毒性的Sb(V).本研究选取数种尖晶石型铁氧磁体,分别对Sb(Ⅲ)和Sb(V)的吸附性能进行测试,除进行关键影响参数的研究外,更以X射线近边缘结构(XANES)解析Sb(Ⅲ)和Sb(V)吸附在铁氧磁体上的氧化状态及电子结构,以探求Sb在尖晶石型铁氧磁体的关键去除机制.研究结果显示,铁氧磁体可快速、高效地去除溶液中的Sb(Ⅲ)和Sb(V),相较于Fe3O4,ZnFe2O4具较佳的去除效果,且Sb(Ⅲ)吸附性能普遍优于Sb(V).与Sb(Ⅲ)、Sb(V)标准样品进行比对后发现,ZnFe2O4在吸附Sb(Ⅲ)后,将Sb(Ⅲ)氧化成的Sb(V).氧的K边近边缘结构图谱显示,Fe3O4(Sb(Ⅲ))与ZnFe2O4(Sb(Ⅲ))在531.7eV有明显的Sb(Ⅲ)-O特征峰,且ZnFe2O4(Sb(Ⅲ))存在较弱的Sb(Ⅲ)-O特征峰强度,表明ZnFe2O4在吸附了Sb(Ⅲ)之后,成功地将部分的Sb(Ⅲ)氧化成Sb(V),故Sb(Ⅲ)-O特征峰强度有明显被减弱的趋势,此结果与锑的K-edge近边缘结构图谱结论是一致的,直接证明了ZnFe2O4不仅具备吸附Sb(Ⅲ)和Sb(V)的能力,也具备将Sb(Ⅲ)氧化成Sb(V)之特性.此外,比较Sb、Fe、Zn的EXAFS图谱发现,无论是k-space或R-space均不相似,证明Sb并没有取代Zn或Fe的任何位置,表明在铁氧磁体吸附Sb的过程中,仅发生单纯的物理性吸附,此与动力学实验结果一致.
关键词:    铁氧磁体    锑吸附    锑的K-edge近边缘结构    氧的K-edge近边缘结构    延伸X射线吸收精细结构   
Adsorption of antimony onto magnetic nano-ferrite: X-ray absorption spectroscopy study
TU Yaojen1,2, PU Yali2,4, CHAN Tingshan3, HUNG Yuhsiang3, DUAN Yanping1,2
1. Institute of Urban Study, Shanghai Normal University, Shanghai, 200234, China;
2. School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, China;
3. National Synchrotron Radiation Research Center(NSRRC), Hsincho, 30076, China;
4. Shanghai Development Park Association, Shanghai, 200233, China
Abstract:
Antimony (Sb) is widely used in many industries. However, Sb contamination can result in serious threats to ecosystem and human. Sb (Sb(Ⅲ) and Sb(V)) from ecosystem, especially from waters. Magnetic nano-ferrites are regarded as excellent and highly effective adsorbents for removing heavy metals from waters due to their advantages of high specific surface area, high removal rate, simple synthetic method, and good solid-liquid separation characteristics. In this study, five commercial bimetallic magnetic nano-ferrites were selected to investigate the adsorption properties of Sb(Ⅲ) and Sb(V). Results of Sb K-edge XANES analyses indicated that ZnFe2O4 had the ability to oxidize Sb(Ⅲ) to Sb(V). O K-edge XANES analyses showed Fe 3d-O2p characteristic peak decreased after adsorption. This result proved the adsorption capacity and oxidation capacity of ZnFe2O4 again. Additionally, EXAFS revealed that the peaks on k-space and R-space are quite different, indicating that Sb did not replace Fe or Zn during the adsorption process conducted by magnetic nano-ferrites.
Key words:    ferrite    antimony adsorption    Sb K-edge XANES    O K-edge XANES    EXAFS   
收稿日期: 2018-05-08
基金项目: 科技部国家重点研发计划(2016YFC0502706),上海市自然科学基金(17ZR1420700),污染控制与资源化研究国家重点实验室开放课题(PCRRF16013)和国家自然科学基金(41601514)资助.
涂耀仁,Tel:+86-13661920584,E-mail:yjtu@shnu.edu.cn
相关功能
PDF(KB) Free
打印本文
加入收藏夹
把本文推荐给朋友
作者相关文章
涂耀仁  在本刊中的所有文章
蒲雅丽  在本刊中的所有文章
詹丁山  在本刊中的所有文章
洪郁翔  在本刊中的所有文章
段艳平  在本刊中的所有文章

参考文献:
[1] FILELLA M, BELZILE N, CHEN Y W. Antimony in the environment:A review focused on natural waters I. Occurrence[J]. Earth-Science Reviews, 2002, 57:125-176.
[2] RAKSHIT S, SARKAR D, PUNAMIYA P, et al. Antimony sorption at gibbsite-water interface[J]. Chemosphere, 2011, 84(4):480-483.
[3] FILELLA M, BELZILE N, CHEN Y W. Antimony in the environment:A review focused on natural waters Ⅱ. Relevant solution chemistry[J]. Earth-Science Reviews, 2002, 59:265-285.
[4] CHAO S, MA Z Y, TONG M P. Efficient removal of trace antimony(Ⅲ) through adsorption by hematite modified magnetic nanoparticles[J]. Journal of Hazardous Materials, 2014, 268:229-236.
[5] NAVARRO P, ALGUACIL F J. Adsorption of antimony and arsenic from a copper electrorefining solution onto activated carbon[J]. Hydrometallurgy, 2002, 66(1):101-105.
[6] QI Z, LAN H, JOSHI T P, et al. Enhanced oxidative and adsorptive capability towards antimony by copper-doping into magnetite magnetic particles[J]. Rsc Advances, 2016, 6(71):66990-67001.
[7] WU Z J, HE M C, GUO X J, et al. Removal of antimony(Ⅲ) and antimony(V) from drinking water by ferric chloride coagulation:Competing ion effect and the mechanism analysis[J]. Separation and Purification Technology, 2010, 76:184-190.
[8] GUO X, WU Z, HE M. Removal of antimony(V) and antimony(Ⅲ) from drinking water by coagulation-flocculation-sedimentation (CFS)[J]. Water Research, 2009, 43(17):4327-4335.
[9] DU X, QU F, LIANG H, et al. Removal of antimony(Ⅲ) from polluted surface water using a hybrid coagulation-flocculation-ultrafiltration (CF-UF) process[J]. Chemical Engineering Journal, 2014, 254(4):293-301.
[10] NAVARRO P, SIMPSON J, ALGUACIL F J. Removal of antimony(Ⅲ) from copper in sulphuric acid solutions by solvent extraction with LIX-1104SM[J]. Hydrometallurgy, 1999, 53(1):121-131.
[11] VINHAL J O, GONÇALVES A D, CRUZ G F B, et al. Speciation of inorganic antimony (Ⅲ&V) employing polyurethane foam loaded with bromopyrogallol red[J]. Talanta, 2016, 150:539-545.
[12] LI J, WEI Y, ZHAO L, et al. Bioaccessibility of antimony and arsenic in highly polluted soils of the mine area and health risk assessment associated with oral ingestion exposure[J]. Ecotoxicology & Environmental Safety, 2014, 110(110):308-315.
[13] LUO H, WANG X, DAI R, et al. Simultaneous determination of arsenic and cadmium by hydride generation atomic fluorescence spectrometry using magnetic zero-valent iron nanoparticles for separation and pre-concentration[J]. Microchemical Journal, 2017, 133:518-523.
[14] KEOCHAIYOM B, JIA W, ZENG G, et al. Synthesis and application of magnetic chlorapatite nanoparticles for zinc(Ⅱ), cadmium(Ⅱ) and lead(Ⅱ) removal from water solutions[J]. Journal of Colloid & Interface Science, 2017, 505:824-835.
[15] CHRISTOPHER F C, ANBALAGAN S, KUMAR P S, et al. Surface adsorption of poisonous Pb(Ⅱ) ions from water using chitosan functionalised magnetic nanoparticles[J]. IET Nanobiotechnology, 2017, 11(4):433-442.
[16] KAI C, HE J, LI Y, et al. Removal of cadmium and lead ions from water by sulfonated magnetic nanoparticle adsorbents[J]. Journal of Colloid & Interface Science, 2017, 494:307-316.
[17] XU P, ZENG G M, HUANG D L, et al. Fabrication of reduced glutathione functionalized iron oxide nanoparticles for magnetic removal of Pb(Ⅱ) from wastewater[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 71:165-173.
[18] DORJEE P, AMARASIRIWARDENA D, XING B. Antimony adsorption by zero-valent iron nanoparticles (nZVI):Ion chromatography-inductively coupled plasma mass spectrometry (IC-ICP-MS) study[J]. Microchemical Journal, 2014, 116:15-23.
[19] TU Y J, LO S C, YOU C F. Selective and fast recovery of neodymium from seawater by magnetic iron oxide Fe3O4[J]. Chemical Engineering Journal, 2015, 262:966-972.
[20] HAYES K F, PAPELIS C, LECKIE J O. Modeling ionic strength effects on anion adsorption at hydrous oxide/solution interfaces[J]. Journal of Colloid and Interface Science, 1988, 125(2):717-726.
[21] LAN B, WANG Y, WANg X, et al. Aqueous arsenic (As) and antimony (Sb) removal by potassium ferrate[J]. Chemical Engineering Journal, 2016, 292:389-397.
[22] QI P, PICHLER T. Competitive adsorption of As(Ⅲ), As(V), Sb(Ⅲ) and Sb(V) onto ferrihydrite in multi-component systems:Implications for mobility and distribution[J]. Journal of Hazardous Materials, 2017, 330:142-148.
[23] KOLBE F, WEISS H, MORGENSTERN P, et al. Sorption of aqueous antimony and arsenic species onto akaganeite[J]. Journal of Colloid & Interface Science, 2011, 357(2):460-465.