引用本文:
朱华清, 吕锡武. 刚毛藻表流湿地裸藻水华的形成与消退[J]. 环境化学, 2018, 37(12): 2638-2644
ZHU Huaqing, LYU Xiwu. Formation and regression of euglena bloom in surface-flow constructed wetlands(SFCW) dominated by Cladophora[J]. Environmental Chemistry, 2018, 37(12): 2638-2644

刚毛藻表流湿地裸藻水华的形成与消退
朱华清1,2,3, 吕锡武1,3
1. 东南大学能源与环境学院, 南京, 210096;
2. 景德镇陶瓷大学材料科学与工程学院, 景德镇, 333403;
3. 无锡太湖水环境研究中心, 无锡, 214135
摘要:
刚毛藻表流湿地(SFCW-CLA)可以有效富集农村分散式污水中的营养物,并回收刚毛藻及其中的微生物作为鱼饲料,但控制不当易发生裸藻水华.分别于2014年和2015年进行优势刚毛藻表流湿地试验(DCT)和全周期刚毛藻表流湿地试验(LCT),研究环境因子(温度和太阳辐照)、营养物(TN、TP、TIC和TOC)消耗速率与SFCW-CLA中刚毛藻和裸藻生长速率的关系;并通过人工气候箱微型试验研究SFCW-CLA裸藻水华的消退机制.实验结果表明,刚毛藻的生长速率与TN、TP和TIC的消耗速率均有关,相关系数和拒绝概率分别为(R=0.66,P=0.11)、(R=0.74,P=O.06)和(R=0.83,P=0.02);裸藻的生长速率与TN(R=-0.89,P=0.01)、TP(R=-0.86,P=0.01)和TIC(R=-0.91,P=0.00)的消耗速率负相关,裸藻浓度和TOC消耗速率(R=0.60,P=0.16)正相关.刚毛藻的生长与环境温度显著相关,与太阳辐照没有相关性,说明自然光照能满足刚毛藻的生长;裸藻的生长与环境温度和太阳辐照均没有相关性,但裸藻变态明显受到太阳辐照的影响,DCT和LCT中裸藻水华持续时间的差异可能与期间环境温度和太阳辐照的差异有关;SFCW-CLA中裸藻水华的消退还直接受到太阳虫和变形虫的捕食作用影响.
关键词:    刚毛藻表流湿地    裸藻水华    太阳虫    变形虫   
Formation and regression of euglena bloom in surface-flow constructed wetlands(SFCW) dominated by Cladophora
ZHU Huaqing1,2,3, LYU Xiwu1,3
1. School of Energy and Environment of Southeast University, Nanjing, 210096, China;
2. School of Material Science and engineering of Jingdezhen Ceramic Insitute, Jingdezhen, 333403, China;
3. ERC of Taihu Lake, Wuxi, 214135, China
Abstract:
Nutrients in rural diffused wastewater can be concentrated by SFCW dominated by Cladophora (SFCW-CLA), and recycled as fish feed. However, SFCW-CLA was often deteriorated by Euglena bloom under improper manipulation. To investigate the relationship between ambient factors (temperature and solar irradiance), nutrient consuption rate (NCR) and growth rates (GR) of Cladophora and Euglena Sanguinea (E.S), Field commissions of SFCW-CLA with inoculation of dominant Cladophora and autogenetic Cladophora were carried out respectively in 2014 and 2015. Miniature cultivation of E.S films in climatic cabinet was conducted to reveal regressing mechanisms of E.S bloom in SFCW-CLA. Results indicated that GR of Cladophora related to NCR of TN, TP and TIC with coefficients and rejection probabilities as (R=0.66,P=0.11), (R=0.74,P=0.06) and (R=0.83,P=0.02) respectively. NCR of TN (R=-0.89,P=0.01), TP (R=-0.86,P=0.01) and TIC (R=-0.91,P=0.00) negatively correlated with GR of E.S, while NCR of TOC (R=0.60,P=0.16) correlated with individual density of E.S. GR of Cladophora significantly correlated with temperature while uncorrelated with solar irradiance. Temperature and solar irradiance uncorrelated with GR of E.S, but effectively influenced bloom duration and metamorphosis of E.S. Furthermore, microscopic tests provided direct evidence of predation of heliozooid and amoebae on the regression of E.S bloom.
Key words:    SFCW-CLA    E.S Bloom    heliozooid    amoebae   
收稿日期: 2018-05-07
基金项目: 国家"十三五"科技重大专项(2017ZX07202004)资助.
吕锡武,Tel:13914753816,E-mail:xiwulu@seu.edu.cn,230129642@seu.edu.cn
相关功能
PDF(KB) Free
打印本文
加入收藏夹
把本文推荐给朋友
作者相关文章
朱华清  在本刊中的所有文章
吕锡武  在本刊中的所有文章

参考文献:
[1] PECKOL P, DEMEOANDERSON B, RIVERS J, et al. Growth, nutrient-uptake capacities and tissue constituents of the macroalgae cladophora-vagabunda and gracilaria-tikvahiae related to site-specific nitrogen loading rates[J]. Marine Biology, 1994, 121(1):175-185.
[2] LIU J Z, VYVERMAN W. Differences in nutrient uptake capacity of the benthic filamentous algae Cladophora sp., Klebsormidium sp and Pseudanabaena sp under varying N/P conditions[J]. Bioresource Technology, 2015,179:234-242.
[3] PRESTON A, MOORE P G. The flora and fauna associated with cladophora-albida (huds) kutz from rockpools on great-cumbrae-island, scotland[J]. Ophelia, 1988, 29(3):169-186.
[4] DODDS W K, GUDDER D A. The ecology of cladophora[J]. Journal of Phycology, 1992, 28(4):415-427.
[5] ZULKIFLY S, HANSHEW A, YOUNG E B, et al. The epiphytic microbiota of the globally widespread macroalga cladophora glomerata (chlorophyta, cladophorales)[J]. American Journal of Botany, 2012, 99(9):1541-1552.
[6] PROMYA J, CHITMANAT C. The effects of spirulina platensis and cladophora algae on the growth performance, meat quality and immunity stimulating capacity of the african sharptooth catfish (Clarias gariepinus)[J]. International Journal of Agriculture and Biology, 2011, 13(1):77-82.
[7] LESTER W W, ADAMS M S,FARMER A M, et al. Effects of light and temperature on photosynthesis of the nuisance alga cladophora-glomerata (l) kutz from green-bay, lake-michigan[J]. New Phytologist, 1988, 109(1):53-58.
[8] LORENZ R C, MONACO M E,HERDENDORF C E, et al. Minimum light requirements for substrate colonization by cladophora-glomerata[J]. Journal of Great Lakes Research, 1991, 17(4):536-542.
[9] ZHU H Q, LU X W, DAI H L, et al. Surface-flow constructed wetlands dominated by Cladophora for reclaiming nutrients in diffuse domestic effluent[J]. Chemosphere, 2018, 195:524-530.
[10] ZULKIFLY S B, GRAHAM J M,YOUNG E B, et al. The genus cladophora kutzing (Ulvophyceae) as a globally distributed ecological engineer[J]. Journal of Phycology, 2013, 49(1):1-17.
[11] JOHNSON P G, PERCIVAL E. Water-soluble polysaccharides of cladophora rupestris.3. smith degradation[J]. Journal of the Chemical Society C-Organic, 1969, (6):906-909.
[12] WOOD K G. Photosynthesis of cladophora in relation to light and CO2 limitation-CaCO3 precipitation. Ecology, 1975, 56(2):479-484.
[13] SALOVIUS S, KRAUFVELIN P. The filamentous green alga cladophora glolmerata as a habitat for littoral macro-fauna in the northern Baltic Sea[J]. Ophelia, 2004, 58(2):65-78.
[14] HAYASHI N, SUGIYAMA J, OKANO T, et al. Selective degradation of the cellulose I-alpha component in Cladophora cellulose with Trichoderma viride cellulase[J]. Carbohydrate Research, 1997, 305(1):109-116.
[15] SALOVIUS S, BONSDORFF E. Effects of depth, sediment and grazers on the degradation of drifting filamentous algae (Cladophora glomerata and Pilayella littoralis)[J]. Journal of Experimental Marine Biology and Ecology, 2004, 298(1):93-109.
[16] OLAFSSON E, AARNIO K, BONSDORFF E, et al. Fauna of the green alga Cladophora glomerata in the Baltic Sea:density, diversity, and algal decomposition stage[J]. Marine Biology, 2013, 160(9):2353-2362.
[17] 赵欣胜,崔丽娟,李伟,等.北京翠湖湿地血红裸藻水华发生的环境条件[J].水生态学杂志,2015,36(2):11-17. ZHAO X S,CUI L J, LI W, et al. Environmental variables influencing euglena sanguinea blooms in Cuihu Lake wetland in Beijing[J]. Journal of Hydroecology, 2015,36(2):11-17(in Chinese).
[18] 刘国祥.水产养殖池塘裸藻水华的特点、危害和调控[J].中国水产,2009(2):59-60.
[19] XAVIER M B, MAINARDESPINTO C S R, et al. Euglena-sanguinea ehrenberg bloom in a fish-breeding tank (pindamonhangaba, sao-paulo, brazil)[J]. Archiv Fur Hydrobiologie, 1991, 89(supp1):133-142.
[20] 赵玉珩,杨红生,乔志刚,等. 鱼池中一种裸藻水华的研究[J].水生生物学报,1994,18(2):186-188. ZHAO Y H, YANG H S, QIAO Z G, et al. Studies on the "water bloom" of euglena sp. in fish ponds[J]. Acta hydrobiologica sinica, 1994, 18(2):186-188(in Chinese).
[21] ZIMBA, P V, MOELLER P D, BEAUCHESNE K, et al. Identification of euglenophycin-A toxin found in certain euglenoids[J]. Toxicon, 2010, 55(1):100-104.
[22] NORKKO J, BONSDORFF E, NORKKO A, et al. Drifting algal mats as an alternative habitat for benthic invertebrates:Species specific responses to a transient resource[J]. Journal of Experimental Marine Biology and Ecology, 2000, 248(1):79-104.
[23] MAHDY A, SCHARFENBERGER U, ADRIAN R, et al. Experimental comparison of periphyton removal by chironomid larvae and Daphnia magna[J]. Inland Waters, 2015, 5(1):81-88.
[24] LEE R E. Phycology[M]. 4th edition. Cambridge:Cambridge University Press, 2008.
[25] NA Y J, DAVINE J, ROK L J, et al. Effects of temperature, irradiance, and nutrient type on the fragment growth of green tide alga cladophora vadorum[J]. Korean Journal of Fisheries and Aquatic Sciences, 2016, 49(5):657-664.
[26] SHAFIQ U R. A red bloom of Euglena shafiqii, a new species, in Dal Lake, Srinagar, Kashmir[J]. Water Air and Soil Pollution, 1998, 108(1-2):69-82.