引用本文:
邴吉帅, 陈丽, 张彭义. γ-Fe-Ti-Al2O3催化臭氧氧化水中布洛芬并阻断溴酸盐生成研究[J]. 环境化学, 2018, 37(12): 2694-2700
BING Jishuai, CHEN Li, ZHANG Pengyi. Catalytic ozonation of ibuprofen in water and ketardation of bromate formation by γ-Fe-Ti-Al2O3[J]. Environmental Chemistry, 2018, 37(12): 2694-2700

γ-Fe-Ti-Al2O3催化臭氧氧化水中布洛芬并阻断溴酸盐生成研究
邴吉帅1,2, 陈丽1, 张彭义2
1. 江苏省海洋资源开发研究院, 淮海工学院, 连云港, 222002;
2. 清华大学环境学院, 北京, 100084
摘要:
以葡萄糖为模版,采用蒸发诱导自组装法合成了铁、钛掺杂γ-Al2O3(γ-Fe-Ti-Al2O3)介孔催化剂,并将其用于臭氧氧化含Br-水中布洛芬.X射线衍射(XRD)、氮气吸附-脱附(BET)、X射线光电子能谱(XPS)表征结果表明,铁、钛成功掺杂进入γ-Al2O3骨架,分布均匀,保持了γ-Al2O3有序的介孔结构,具有较大的比表面积,钛的价态为Ti4+和Ti3+共存,铁的价态是Fe3+.铁、钛的掺杂显著提高γ-Al2O3催化臭氧氧化含Br-水中布洛芬的活性,且有效阻断了溴酸盐的生成,反应60 min后,TOC去除率由γ-Al2O3的54%提高到86%,而单独臭氧氧化仅为13%.电子自旋共振和催化剂表面Fe2+离子捕获实验表明,羟基和超氧自由基是反应活性氧物种,有利于有机物的矿化;有机物能够强化γ-Fe-Ti-Al2O3催化剂中的Fe3+还原为Fe2+,从而有利于溴酸盐的阻断还原.
关键词:    γ-Fe-Ti-Al2O3    催化臭氧氧化    布洛芬    溴酸盐   
Catalytic ozonation of ibuprofen in water and ketardation of bromate formation by γ-Fe-Ti-Al2O3
BING Jishuai1,2, CHEN Li1, ZHANG Pengyi2
1. Marine Resources Development Institute of Jiangsu, Huaihai Institute of Technology, Lianyungang, 222002, China;
2. School of Environment, Tsinghua University, Beijing, 100084, China
Abstract:
Using glucose as a template, iron-, and titanium-doped γ-Al2O3 (γ-Fe-Ti-Al2O3) mesoporous catalysts were synthesized by evaporation-induced self-assembly method and applied to ozonation of ibuprofen in Br- containing water. X ray diffraction (XRD), nitrogen adsorption desorption (BET), X ray photoelectron spectroscopy (XPS) characterization results showed that iron and titanium were successfully doped into the skeleton of γ-Al2O3, with uniform distribution. And the ordered mesoporous structure of γ-Al2O3 was maintained, with large specific surface area. The valence of titanium coexists with Ti4+ and Ti3+, and the valence of iron was Fe3+.The addition of iron and titanium significantly enhanced the removal rate of ibuprofen by ozonation in Br- containing water, and effectively blocked the formation of bromate. After 60 min reaction, the removal rate of TOC was increased from 54% of γ-Al2O3/O3 to 86% with γ-Fe-Ti-Al2O3/O3, while the ozonation alone was only 13%. Electron spin resonance and Fe2+ ion capture experiments on the surface of the catalyst showed that hydroxyl and superoxide radicals were the reactive oxygen species, which were beneficial to the mineralization of organic matter. The addition of organic compounds enhanced the reduction of Fe3+ to Fe2+ in the catalytic ozonation of γ-Fe-Ti-Al2O3, which is beneficial to the retardation of bromate generation.
Key words:    γ-Fe-Ti-Al2O3    catalytic ozonation    ibuprofen    bromate   
收稿日期: 2018-01-29
基金项目: 江苏省环保科研项目(2012010)和江苏省科技计划项目(BE2013662)资助.
张彭义,Tel:15895785887,E-mail:791685987@qq.com
相关功能
PDF(KB) Free
打印本文
加入收藏夹
把本文推荐给朋友
作者相关文章
邴吉帅  在本刊中的所有文章
陈丽  在本刊中的所有文章
张彭义  在本刊中的所有文章

参考文献:
[1] PINKERNELL U, VON GUNTEN U. Bromate minimization during ozonation:Mechanistic considerations[J]. Environmental Science & Technology, 2001, 35(12):2525-2531.
[2] YANG J X, LI J, DONG W Y, et al. Enhancement of bromate formation by pH depression during ozonation of bromide-containing water in the presence of hydroxylamine[J]. Water Research, 2017, 109:135-143.
[3] NIE Y, HU C, LI N, et al. Inhibition of bromate formation by surface reduction in catalytic ozonation of organic pollutants over β-FeOOH/Al2O3[J]. Applied Catalysis B:Environmental, 2014, 147:287-292.
[4] XIAO Q, YU S, LI L, et al. An overview of advanced reduction processes for bromate removal from drinking water:Reducing agents, activation methods, applications and mechanisms[J]. Journal of Hazardous Materials, 2017, 324:230-240.
[5] VON GUNTEN U. Ozonation of drinking water:Part Ⅱ. Disinfection and by-product formation in presence of bromide, iodide or chlorine[J]. Water Research, 2003, 37:1469-1487.
[6] SAGEHASHI M, SHIRAISHI K, FUJITA H, et al. Ozone decomposition of 2-methylisoborneol (MIB) in adsorption phase on high silica zeolites with preventing bromate formation[J]. Water Research, 2005, 39(13):2926-2934.
[7] ZHANG T, HOU P, QIANG Z, et al. Reducing bromate formation with H+-form high silica zeolites during ozonation of bromide-containing water:Effectiveness and mechanisms[J]. Chemosphere, 2011, 82(4):608-612.
[8] YANG H, YANG S, WU L, et al. CexZr1-xO2 mixed oxides applied to minimize the bromate formation in the catalytic ozonation of a filtered water[J]. Catalysis Communications, 2011, 15(1):99-102.
[9] HARVEY A E, SMART J A, AMIS E S. Simultaneous spectrophotometric determination of Iron(Ⅱ) and total iron with 1,10-Phenanthroline[J]. Analytical Chemistry, 1955, 27(1):26-29.
[10] XU B, XIAO T, YAN Z, et al. Synthesis of mesoporous alumina with highly thermal stability using glucose template in aqueous system[J]. Microporous and Mesoporous Materials, 2006, 91(1-3):293-295.
[11] ZHAN W, LU G, GUO Y, et al. Synthesis of Ln-doped MCM-41 mesoporous materials and their catalytic performance in oxidation of styrene[J]. Journal of Rare Earths, 2008, 26(1):59-65.
[12] JEON H, PARK J, JANG W, et al. Detection of oxygen ion drift in Pt/Al2O3/TiO2/Pt RRAM using interface-free single-layer graphene electrodes[J]. Carbon, 2014, 75:209-216.
[13] LIU W J, ZENG F X, JIANG H, et al. Composite Fe2O3 and ZrO2/Al2O3 photocatalyst:Preparation, characterization, and studies on the photocatalytic activity and chemical stability[J]. Chemical Engineering Journal, 2012, 180:9-18.
[14] LIOU Y, CHEN Y, CHEN B, et al. XPS study of aluminum coating on TiO2 anode of dye-sensitized solar cells[J]. Surface and Coatings Technology, 2013, 231:535-538.
[15] BRAJPURIYA R, SHRIPATHI T. Investigation of Fe/Al interface as a function of annealing temperature using XPS[J]. Applied Surface Science, 2009, 255(12):6149-6154.
[16] BING J S, HU C, ZHANG L L. Enhanced mineralization of pharmaceuticals by surface oxidation over mesoporous γ-Ti-Al2O3 suspension with ozone[J]. Applied Catalysis B:Environmental, 2017, 202, 118-126.