引用本文:
赵瑾, 王文华, 曹军瑞, 姜天翔, 王勋亮. 温度对海水微絮凝-超滤工艺的影响[J]. 环境化学, 2018, 37(12): 2740-2748
ZHAO Jin, WANG Wenhua, CAO Junrui, JIANG Tianxiang, WANG Xunliang. Influence of temperature on seawater micro-flocculation-ultrafiltration process[J]. Environmental Chemistry, 2018, 37(12): 2740-2748

温度对海水微絮凝-超滤工艺的影响
赵瑾, 王文华, 曹军瑞, 姜天翔, 王勋亮
国家海洋局天津海水淡化与综合利用研究所, 天津, 300192
摘要:
采用微絮凝-超滤工艺处理不同温度的海水,研究了温度对有机物的去除效果、絮体特性以及超滤膜通量的影响规律.以三氯化铁为絮凝剂,分析了微絮凝-超滤对海水UV254、DOC及三维荧光光谱的影响,监测了不同海水温度下微絮凝过程中产生絮体的絮凝指数、分形维数等特性,考察了微絮凝对超滤膜污染的减缓作用.实验结果表明,当FeCl3投加量为1.0 mg·L-1时,对5℃、10℃、15℃、20℃海水的UV254去除率分别为84.4%、81.3%、78.1%、71.9%,DOC去除率分别为81.8%、75.8%、65.0%、57.5%,微絮凝-超滤工艺对低温海水的去除效果优于常温海水,可去除海水中的芳香族蛋白类和腐殖酸类有机物;温度对絮凝指数FI的影响较小,说明其不同温度下微絮凝形成的絮体粒径变化不大;但低温海水形成的絮体分形维数要小于常温海水,说明低温海水的絮体结构更加疏松,疏松的絮体结构更有利于减缓后续超滤膜通量的下降.
关键词:    温度    海水    微絮凝    超滤    膜污染   
Influence of temperature on seawater micro-flocculation-ultrafiltration process
ZHAO Jin, WANG Wenhua, CAO Junrui, JIANG Tianxiang, WANG Xunliang
Institute of Seawater Desalination and Multipurpose Utilization, Tianjin, 300192, China
Abstract:
Combined process of micro-flocculation and ultrafiltration was applied in the purification of seawater, and ferric trichloride was used as a flocculent. The influences of temperature on the removal efficiencies of organic matters, floc characteristics and flux of the ultrafiltration membrane were investigated. The UV254,DOC and three-dimesional fluorescence spectroscopy of seawater were analyzed. And the flocculation index parameters and fractal dimension at different temperatures were monitored during the micro-flocculation process, and their effects on mitigating membrane fouling were also investigated. Experimental results demonstrated the removal efficiency of UV254 ranged from 71.9% to 84.4%, and DOC ranged from 57.5% to 81.8% at different temperatures when the dosage of ferric trichloride was 1.0 mg·L-1, respectively. As a result, low temperatures were beneficial in achieving higher removal efficiencies of organic matters. Aromatic proteins and humic acids were removed by micro-flocculation. The particle sizes of flocs at different temperatures were similar, since the influence of temperature on the flocculation index formed by micro-flocculation was insignificant. But the flocs formed at lower temperatures had more loose interior structures and smaller fractal dimension, which were beneficial to the mitigation of membrane fouling.
Key words:    temperature    seawater    micro-flocculation    ultrafiltration    membrane fouling   
收稿日期: 2018-01-25
基金项目: 中央级公益性科研院所基本科研业务费专项资金(K-JBYWF-2015-T10,K-JBYWF-2017-G15)资助.
曹军瑞,E-mail:caojunrui@163.com
相关功能
PDF(KB) Free
打印本文
加入收藏夹
把本文推荐给朋友
作者相关文章
赵瑾  在本刊中的所有文章
王文华  在本刊中的所有文章
曹军瑞  在本刊中的所有文章
姜天翔  在本刊中的所有文章
王勋亮  在本刊中的所有文章

参考文献:
[1] GREENLEE L F, LAWLER D F, FREEMAN B D, et al. Reverse osmosis desalination:Water sources, technology, and today's challenges[J]. Water Research, 2009, 43(9):2317-2348.
[2] EDZWALD J K, HAARHOFF J. Seawater pretreatment for reverse osmosis:Chemistry, contaminants, and coagulation[J]. Water Research, 2011, 45(17):5428-5440.
[3] 张海春, 陆阿定. 反渗透海水淡化预处理技术研究现状[J]. 能源环境保护, 2010, 24(3):1-4. ZHANG H C,LU A D.Research status of pretreatment in seawater reverse osmosis desalination[J].Energy Environmental Protection, 2010, 24(3):1-4(in Chinese).
[4] LI S, LEE S T, SINHA S, et al. Transparent exopolymer particles(TEP) removal efficiency by a combination of coagulation and ultrafiltration to minimize SWRO membrane fouling[J]. Water Research, 2016, 102:485-493.
[5] HARRY FUTSELAAR,BASTIAAN BLANKERT,TOM SPANJER,et al. Ultrafiltration used as pre-treatment for SWRO desalination:dynamic coagulant control under extreme conditions[J]. Desalination and Water Treatment:Science and Engineering,2013,51(1/3):407-415.
[6] YUN C W, JEONG J L, LEONARD D T, et al. Characteristics of membrane fouling by consecutive chemical cleaning in pressurized ultrafiltration as pre-treatment of seawater desalination[J]. Desalination, 2015, 369:51-61.
[7] PEIRIS R H, HALL C, BUDMAN H, et al. Identifying fouling events in a membrane-based drinking water treatment process using principal component analysis of fluorescence excitation-emission matrices[J].Water Research, 2010, 44(1):185-194.
[8] PEIRIS R H,JAKLEWICZ M,BUDMAN H, et al.Assessing the role of feed water constituents in irreversible membrane fouling of pilot-scale ultrafiltration drinking water treatment systems[J].Water Research, 2013, 47(10):3364-3374.
[9] TEYCHENE B,COLLET G,GALLARD H.Modeling of combined particles and natural organic matter fouling of ultrafiltration membrane[J].Journal of Membrane Science, 2016, 505:185-193.
[10] HUANG H,LEE N,YOUNG T,et al.Natural organic matter fouling of low-pressure,hollow-fiber membrane:Effects of NOM source and hydrodynamic conditions[J]. Water Research, 2007, 41(17):3823-3832.
[11] 杨海燕, 邢加建, 王灿,等. 预处理对短流程超滤工艺不可逆膜污染影响的中试试验[J].环境科学, 2017, 38(3):1046-1053. YANG H Y,XING J J,WANG C,et al.Effects of pretreatment on hydraulic irreversible membrane fouling during Ultrafiltration short process:A pilot study[J].Environmental Science, 2017, 38(3):1046-1053(in Chinese).
[12] 初永宝, 郑文龙, 王雪,等. 微絮凝-超滤联用工艺处理低温水膜污染的机理[J]. 青岛科技大学学报(自然科学版), 2016, 37(2):174-179. CHU Y B,ZHENG W L,WANG X,et al.Mechanism of membrane fouling during the treatment of low temperature water by Micro-flocculation-ultrafiltration process[J].Journal of Qingdao University of Science and Technology(Natural Science Edition), 2016, 37(2):174-179(in Chinese).
[13] WAITE T D,SCHAFER A I,FANE A G, et al. Colloidal fouling of ultrafiltration membranes:Impact of aggregate structure and size[J]. Journal of Colloid and Interface Science, 1999, 212(2):264-274.
[14] RAJAT CHAKRABORTI,JOSEPH F ATKINSON,JOHN E Van Benschoten. Characterization of alum floc by image analysis[J]. Environmental Science and Technology,2000,34(18):3969-3976.
[15] 孙梅香, 吴曼, 刘会应,等. 基于响应曲面法的环境因素对生活污水三维荧光光谱的影响[J]. 环境工程学报, 2016, 10(10):5491-5497. SUN M X,WU M,LIU H Y,et al.Effects of environmental factors on 3DEEMs of domestic sewage based on response surface methodology[J].Chinese Journal of Environmental Engineering, 2016, 10(10):5491-5497(in Chinese).
[16] 刘铮, 董秉直, 陈艳,等.三维荧光光谱表征膜污染物[J]. 环境化学, 2010, 29(3):496-501. LIU Z,DONG B Z,CHEN Y,et al.Characterization of membrane foulants by using three dimensional excitation and emission matrix fluorescence specroscopy[J].Environmental Chemistry, 2010, 29(3):496-501(in Chinese).
[17] ZHU H,WEN X,HUANG X.Membrane organic fouling and the effect of pre-ozonation in microfiltration of secondary effluent organic matter[J]. Journal of Membrane Science, 2010,352(1-2):213-221.
[18] PEIRIS R H,BUDMAN H,MORESOLI C, et al.Understanding fouling behavior of ultrafiltration membrane processes and natural water using principal component analysis of fluorescence excitation-emission matrices[J]. Journal of Membrane Science, 2010,357(1-2):62-72.
[19] 王晓昌, 金鹏康. 腐殖酸铝盐絮凝体的动态特性[J].环境科学, 2002, 23(4):71-75. WANG X C,JIN P K.Dynamic properties of Al-humic flocs[J]. Environmental Science, 2002, 23(4):71-75(in Chinese).
[20] 杨忠莲, 高宝玉, 王燕, 等. 聚合氯化铁-聚环氧氯丙烷-二甲胺复合絮凝剂在模拟染料废水处理中的絮体特性研究[J].功能材料, 2012, 43(14):1936-1940. YANG Z L,GAO B Y,WANG Y,et al.Floc characteristics during synthetic dying wastewater treatment with polyferric chloride-epichlorohydrin-dimethylamine(PFC-EPI-DMA)[J].Journal of Functional Materials, 2012, 43(14):1936-1940(in Chinese).
[21] 刘利. 高浓度煤泥水絮体分形特性及混凝机理的研究[D]. 徐州:中国矿业大学, 2014, 20-35. LIU L.Study on fractal characteristics of flocs and coagulation mechanism under slime water with high concentration[D].Xuzhou:China University of Mining and Technology, 2014, 20-35(in Chinese).
[22] 邹瑜斌, 陈昊雯, 段淑璇, 等. 混凝-超滤过程中絮体形态对膜污染的影响[J]. 环境工程学报, 2017, 11(12):6226-6232. ZOU Y B,CHEN H W,DUAN S X,et al.Effect of floc morphology on membrane fouling in a coagulation-ultrafiltration process[J]. Chinese Journal of Environmental Engineering, 2017, 11(12):6226-6232(in Chinese).
相关文献:
1.王晓昌, 王锦.横向流超滤膜污染动力学模型[J]. 环境化学, 2002,21(6): 552-557