多胺基水凝胶的合成及其对铜离子的吸附

王晶晶, 李正魁. 多胺基水凝胶的合成及其对铜离子的吸附[J]. 环境工程学报, 2016, 10(9): 4815-4820. doi: 10.12030/j.cjee.201504132
引用本文: 王晶晶, 李正魁. 多胺基水凝胶的合成及其对铜离子的吸附[J]. 环境工程学报, 2016, 10(9): 4815-4820. doi: 10.12030/j.cjee.201504132
WANG Jingjing, LI Zhengkui. Synthesis of multi-amine functionalized hydrogel and its adsorption of copper ions[J]. Chinese Journal of Environmental Engineering, 2016, 10(9): 4815-4820. doi: 10.12030/j.cjee.201504132
Citation: WANG Jingjing, LI Zhengkui. Synthesis of multi-amine functionalized hydrogel and its adsorption of copper ions[J]. Chinese Journal of Environmental Engineering, 2016, 10(9): 4815-4820. doi: 10.12030/j.cjee.201504132

多胺基水凝胶的合成及其对铜离子的吸附

  • 基金项目:

    国家水体污染控制与治理科技重大专项(2012ZX07101-006,2013ZX07101-014)

  • 中图分类号: X703.1

Synthesis of multi-amine functionalized hydrogel and its adsorption of copper ions

  • Fund Project:
  • 摘要: 以聚乙烯亚胺和2-丙烯酸羟乙酯为共聚单体,采用60Co-γ射线辐照法,制备了新型多胺基水凝胶p(PEI/HEA),并对其进行了红外光谱和X射线电子能谱表征。通过静态吸附实验研究了其对水溶液中Cu(Ⅱ)的吸附性能,结果表明,随pH值的升高,水凝胶的吸附量逐渐增加,在pH=5.5时达到最大;p(PEI/HEA)对Cu(Ⅱ)的吸附动力学过程遵循准二级动力学模型,吸附等温过程符合Langmuir单分子层吸附,最大吸附量为28.98 mg·g-1。
  • 加载中
  • [1] MATHURIYA A. S., YAKHMI J. V. Microbial fuel cells to recover heavy metals. Environmental Chemistry Letters,2014, 12(4):483-494
    [2] CHEN Quanyuan, LUO Zhou, HILLS C., et al. Precipitation of heavy metals from wastewater using simulated flue gas:Sequent additions of fly ash, lime and carbon dioxide. Water Research,2009, 43(10):2605-2614
    [3] REZVANI-BOROUJENI A., JAVANBAKHT M., KARIMI M., et al. Immoblization of thiol-functionalized nanosilica on the surface of poly (ether sulfone) membranes for the removal of heavy-metal ions from industrial wastewater samples. Industrial & Engineering Chemistry Research,2015, 54(1):502-513
    [4] ZEWAIL T. M., YOUSEF N. S. Chromium ions (Cr6+ & Cr3+) removal from synthetic wastewater by electrocoagulation using vertical expanded Fe anode. Journal of Electroanalytical Chemistry,2014, 735:123-128
    [5] PATHANIA D., SHARMA G., Thakur R. Pectin@zirconium (IV) silicophosphate nanocomposite ion exchanger:Photo catalysis, heavy metal separation and antibacterial activity. Chemical Engineering Journal,2015, 267:235-244
    [6] ŞEN A., PEREIRA H., OLIVELLA M. A., et al. Heavy metals removal in aqueous environments using bark as a biosorbent. International Journal of Environmental Science and Technology,2015, 12(1):391-404
    [7] LI Xueying, ZHOU Haihui, WU Wenqin, et al. Studies of heavy metal ion adsorption on Chitosan/Sulfydryl-functionalized graphene oxide composites. Journal of Colloid and Interface Science,2015, 448:389-397
    [8] DAMAJ A., AYOUB G. M., AL-HINDI M., et al. Activated carbon prepared from crushed pine needles used for the removal of Ni and Cd. Desalination and Water Treatment,2015, 53(12):3371-3380
    [9] TONTISIRIN S. Highly crystalline LSX zeolite derived from biosilica for copper adsorption:The green synthesis for environmental treatment. Journal of Porous Materials,2015, 22(2):437-445
    [10] GHORBEL-ABID I., TRABELSI-AYADI M. Competitive adsorption of heavy metals on local landfill clay. Arabian Journal of Chemistry,2015, 8(1):25-31
    [11] LI Zhili, GE Yuanyuan, WAN Liang. Fabrication of a green porous lignin-based sphere for the removal of lead ions from aqueous media. Journal of Hazardous Materials,2015, 285:77-83
    [12] WU Ronglan, TIAN Lingyuan, WANG Wei, et al. Bifunctional cellulose derivatives for the removal of heavy-metal ions and phenols:Synthesis and adsorption studies. Journal of Applied Polymer Science,2015, 132(17):1-9
    [13] HUI Bing, ZHANG Yi, YE Lin. Structure of PVA/gelatin hydrogel beads and adsorption mechanism for advanced Pb (Ⅱ) removal. Journal of Industrial and Engineering Chemistry,2015, 21:868-876
    [14] CHEN J. J., AHMAD A. L., OOI B. S. Thermo-responsive properties of poly (N-isopropylacrylamide-co-acrylic acid) hydrogel and its effect on copper ion removal and fouling of polymer-enhanced ultrafiltration. Journal of Membrane Science,2014, 469:73-79
    [15] AHMED E. M. Hydrogel:Preparation, characterization, and applications:A review. Journal of Advanced Research,2015, 6(2):105-121
    [16] ABDEL-AAL S. E. Synthesis of copolymeric hydrogels using gamma radiation and their utilization in the removal of some dyes in wastwater. Journal of Applied Polymer Science,2006, 102(4):3720-3731
    [17] LI Buyi, SU Fabing, LUO Hekuan, et al. Hypercrosslinked microporous polymer networks for effective removal of toxic metal ions from water. Microporous and Mesoporous Materials,2011, 138(1/2/3):207-214
    [18] PANG Ya, ZENG Guangming, TANG Lin, et al. PEI-grafted magnetic porous powder for highly effective adsorption of heavy metal ions. Desalination,2011, 281:278-284
    [19] SPELL H. L. DETERMINATION of piperazine rings in ethyleneamines, poly (ethyleneamine), and polyethylenimine by infrared spectrometry. Analytical Chemistry,1969, 41(7):902-905
    [20] CHEN J. P., YANG Lei. Chemical modification of Sargassum sp. for prevention of organic leaching and enhancement of uptake during metal biosorption. Industrial & Engineering Chemistry Research,2005, 44(26):9931-9942
    [21] ANIRUDHAN T. S., SUCHITHRA P. S. Humic acid-immobilized polymer/bentonite composite as an adsorbent for the removal of copper (Ⅱ) ions from aqueous solutions and electroplating industry wastewater. Journal of Industrial and Engineering Chemistry,2010, 16(1):130-139
    [22] DENG Shubo, TING Yenpeng. Polyethylenimine-modified fungal biomass as a high-capacity biosorbent for Cr (VI) anions:Sorption capacity and uptake mechanisms. Environmental Science & Technology,2005, 39(21):8490-8496
    [23] MOHAN D., KUMAR H., SARSWAT A., et al. Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars. Chemical Engineering Journal,2014, 236:513-528
    [24] MOHAN D., SINGH P., SARSWAT A., et al. Lead sorptive removal using magnetic and nonmagnetic fast pyrolysis energy cane biochars. Journal of Colloid and Interface Science,2015, 448:238-250
    [25] POPURI S. R., VIJAYA Y., BODDU V. M., et al. Adsorptive removal of copper and nickel ions from water using chitosan coated PVC beads. Bioresource Technology,2009, 100(1):194-199
    [26] WANG Pan, DU Mingliang, ZHU Han, et al. Structure regulation of silica nanotubes and their adsorption behaviors for heavy metal ions:pH effect, kinetics, isotherms and mechanism. Journal of Hazardous Materials,2015, 286:533-544
    [27] CHENG Zhenfeng, WU Yonghui, WANG Na, et al. Development of a novel hollow fiber cation-exchange membrane from bromomethylated poly (2, 6-dimethyl-1, 4-phenylene oxide) for removal of heavy-metal ions. Industrial & Engineering Chemistry Research,2010, 49(7):3079-3087
    [28] LIU Changkun, BAI Renbi, HONG Liang. Diethylenetriamine-grafted poly (glycidyl methacrylate) adsorbent for effective copper ion adsorption. Journal of Colloid and Interface Science,2006, 303(1):99-108
  • 加载中
计量
  • 文章访问数:  1700
  • HTML全文浏览数:  1287
  • PDF下载数:  836
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-05-14
  • 刊出日期:  2016-09-10
王晶晶, 李正魁. 多胺基水凝胶的合成及其对铜离子的吸附[J]. 环境工程学报, 2016, 10(9): 4815-4820. doi: 10.12030/j.cjee.201504132
引用本文: 王晶晶, 李正魁. 多胺基水凝胶的合成及其对铜离子的吸附[J]. 环境工程学报, 2016, 10(9): 4815-4820. doi: 10.12030/j.cjee.201504132
WANG Jingjing, LI Zhengkui. Synthesis of multi-amine functionalized hydrogel and its adsorption of copper ions[J]. Chinese Journal of Environmental Engineering, 2016, 10(9): 4815-4820. doi: 10.12030/j.cjee.201504132
Citation: WANG Jingjing, LI Zhengkui. Synthesis of multi-amine functionalized hydrogel and its adsorption of copper ions[J]. Chinese Journal of Environmental Engineering, 2016, 10(9): 4815-4820. doi: 10.12030/j.cjee.201504132

多胺基水凝胶的合成及其对铜离子的吸附

  • 1. 南京大学环境学院, 污染控制与资源化研究国家重点实验室, 南京 210023
基金项目:

国家水体污染控制与治理科技重大专项(2012ZX07101-006,2013ZX07101-014)

摘要: 以聚乙烯亚胺和2-丙烯酸羟乙酯为共聚单体,采用60Co-γ射线辐照法,制备了新型多胺基水凝胶p(PEI/HEA),并对其进行了红外光谱和X射线电子能谱表征。通过静态吸附实验研究了其对水溶液中Cu(Ⅱ)的吸附性能,结果表明,随pH值的升高,水凝胶的吸附量逐渐增加,在pH=5.5时达到最大;p(PEI/HEA)对Cu(Ⅱ)的吸附动力学过程遵循准二级动力学模型,吸附等温过程符合Langmuir单分子层吸附,最大吸附量为28.98 mg·g-1。

English Abstract

参考文献 (28)

返回顶部

目录

/

返回文章
返回