[1]
|
黄勇.浅析重金属污染现状及治理技术研究进展.低碳世界,2014(1):9-10
|
[2]
|
朱映川, 刘雯, 周遗品, 等. 水体重金属污染现状及其治理方法研究进展. 广东农业科学, 2008(8): 143-146 Zhu Yingchuan, Liu Wen, Zhou Yipin, et al. Reused path of heavy metal pollution in hydro-environment and its research advance. Guangdong Agricultural Sciences, 2008(8): 143-146(in Chinese)
|
[3]
|
史志进. 浅析水体重金属污染的危害及生物监测方法. 科技致富向导, 2011(4): 297 Shi Zhijin. Analyses the harm and biological monitoring method of heavy metal pollution in water. Guide of Sci-Tech Magazine, 2011(4): 297(in Chinese)
|
[4]
|
罗巧玉, 王晓娟, 林双双, 等. AM真菌对重金属污染土壤生物修复的应用与机理. 生态学报, 2013, 33(13): 3898 -3906 Luo Qiaoyu, Wang Xiaojuan, Lin Shuangshaung, et al. Mechanism and application of bioremediation to heavy metal polluted soil using arbuscular mycorrhizal Fungi. Acta Ecologica Sinica, 2013, 33(13): 3898-3906(in Chinese)
|
[5]
|
Machado M. D., Soares E. V., Soares H. M. V. M. Selective recovery of chromium, copper, nickel, and zinc from an acid solution using an environmentally friendly process. Environmental Science and Pollution Research, 2011, 18(8): 1279-1285
|
[6]
|
Mthombo T. S., Mishra A. K., Mishra S. B., et al. The adsorption behavior of Cu(II), Pb(II), and Co(II) of ethylene vinyl acetate-clinoptilolite nanocomposites. Journal of Applied Polymer Science, 2011, 121(6): 3414-3424
|
[7]
|
秦恒飞, 刘婷逢, 周建斌. Na2S·HNO3改性活性炭对水中低浓度Pb2+吸附性能的研究. 环境工程学报, 2011, 5(2): 306-310 Qin Hengfei, Liu Tingfeng, Zhou Jianbin. Research on adsorbing low concentration Pb2+ in water by Na2S·HNO3 modified activated carbon. Chinese Journal of Environmental Engineering, 2011, 5(2): 306-310(in Chinese)
|
[8]
|
Valderrama A., Tapia J., Penailillo P., et al. Water phytoremediation of cadmium and copper using Azolla filiculoides Lam. in a hydroponic system. Water and Environment Journal, 2013, 27(3): 293-300
|
[9]
|
Sahu G., Sahoo S., Rath S. P. Bio-absorption of bio-chemical study of water hyacinth (Eichhornia crassipes) with reference to chromium and cadmium. Advances in Plant Sciences, 2014, 27(2): 311-316
|
[10]
|
Sharma S., Singh B., Manchanda V. K. Phytoremediation: Role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environmental Science and Pollution Research, 2015, 22(2): 946-962
|
[11]
|
Mahamadi C., Nharingo T. Competitive adsorption of Pb2+, Cd2+ and Zn2+ ions onto Eichhornia crassipes in binary and ternary systems. Bioresource Technology, 2010, 101(3): 859-864
|
[12]
|
Tel-Or E., Forni C. Phytoremediation of hazardous toxic metals and organics by photosynthetic aquatic systems. Plant Biosystems, 2011, 145(1): 224-235
|
[13]
|
郑建初, 盛婧, 张志勇, 等. 凤眼莲的生态功能及其利用. 江苏农业学报, 2011, 27(2): 426-429 Zheng Jianchu, Sheng Jing, Zhang Zhiyong, et al. Ecological function of hyacinth and its utilization. Jiangsu Journal of Agricultural Sciences, 2011, 27(2): 426-429(in Chinese)
|
[14]
|
Tiwari S., Dixit S., Verma N. An Effective means of biofiltration of heavy metal contaminated water bodies using aquatic weed Eichhornia crassipes. Environmental Monitoring and Assessment, 2007, 129(1-3): 253-256
|
[15]
|
蒋伟军, 颜幼平, 李萍. 水葫芦资源化利用综述. 水资源保护, 2010, 26(6): 79-83Jiang Weijun, Yan Youping, Li Ping. Progress in resources utilization of eichharnia crassipes. Water Resources Protection, 2010, 26(6): 79-83(in Chinese)
|
[16]
|
Wu J. S., Ho T. C., Chien H. C., et al. Characterization of the high molecular weight Cd-binding complex in water hyacinth (Eichhornia crassipes) when exposed to Cd. Journal of Agricultural and Food Chemistry, 2008, 56(14): 5806-5812
|
[17]
|
达良俊, 陈鸣. 凤眼莲不同部位对重金属的吸收、吸附作用研究. 上海环境科学, 2003, 22(11): 765-767Da Liangjun, Chen Ming. Heavy metal content in different parts of Eichhornia crassipes and adsorption of its root system. Shanghai Environmental Sciences, 2003, 22(11): 765-767(in Chinese)
|
[18]
|
董小霞, 颜昌宙, 王灶生, 等. 组合式水生植物净化系统对Cu、Pb和Cd的去除与生物富集特征. 环境工程学报, 2014, 8(4): 1447-1453Dong Xiaoxia, Yan Changzhou, Wang Zaosheng, et al. Removal efficiency and accumulation characteristics of Cu, Pb and Cd in combined purification systems. Chinese Journal of Environmental Engineering, 2014, 8(4): 1447-1453(in Chinese)
|
[19]
|
纪苗苗, 林波, 吴跃明, 刘建新. 不同水域中水葫芦对铅、镉、铬、汞的富集规律研究. 草业科学, 2010, 27(7): 1-4 Ji Miaomiao, Lin Bo, Wu Yueming, et al. Study on the enrichment patterns of Pb, Cd, Cr and Hg in water hyacinth in different water areas. Pratacultural Science, 2010, 27(7): 1-4(in Chinese)
|
[20]
|
Kim J., Kim W. J. Roles of water hyacinths and their roots for reducing algal concentration in the effluent from waste stabilization ponds. Water Research, 2000, 34(13): 3285-3294
|
[21]
|
蔡成翔, 王华敏, 张宗明. 水葫芦对五种重金属离子的去除速率与富集机制研究. 广西右江民族师专学报, 2002, 15(6): 48-51Cai C. X., Wang H. M., Zhang Z. M. Studies on beneficiation mechanism and speed rate of removal of five heavy metalic ions by water gourd. Journal of Youjiang Teachers College for Nationalities Guangxi, 2002, 15(6): 48-51(in Chinese)
|
[22]
|
孔牧, 任天祥. 植物体内元素吸收积累初步研究. 物探与化探, 1999(1): 33-37
|
[23]
|
Ghabbour E. A., Davies G., Lam Y. Y., et al. Metal binding by humic acids isolated from water hyacinth plants (Eichhornia crassipes Solm-Laubach: Pontedericeae) in the Nile Delta, Egypt. Environmental Pollution, 2004, 131(3): 445-451
|
[24]
|
Lin Sen, Wang Guoxing, Na Zhongyuan, et al. Long-root Eichhornia crassipes as a biodegradable adsorbent for aqueous As(Ⅲ)and As(Ⅴ). Chemical Engineering Journal, 2012, 183: 365-371
|