改性陶粒对水中内分泌干扰物的吸附去除

郭劲松, 林佳琪, 刘靓, 陈猷鹏, 方芳. 改性陶粒对水中内分泌干扰物的吸附去除[J]. 环境工程学报, 2015, 9(6): 2547-2554. doi: 10.12030/j.cjee.20150603
引用本文: 郭劲松, 林佳琪, 刘靓, 陈猷鹏, 方芳. 改性陶粒对水中内分泌干扰物的吸附去除[J]. 环境工程学报, 2015, 9(6): 2547-2554. doi: 10.12030/j.cjee.20150603
Guo Jingsong, Lin Jiaqi, Liu Liang, Chen Youpeng, Fang Fang. Removal of endocrine disrupting chemicals from aqueous solution by adsorption using modified ceramicites[J]. Chinese Journal of Environmental Engineering, 2015, 9(6): 2547-2554. doi: 10.12030/j.cjee.20150603
Citation: Guo Jingsong, Lin Jiaqi, Liu Liang, Chen Youpeng, Fang Fang. Removal of endocrine disrupting chemicals from aqueous solution by adsorption using modified ceramicites[J]. Chinese Journal of Environmental Engineering, 2015, 9(6): 2547-2554. doi: 10.12030/j.cjee.20150603

改性陶粒对水中内分泌干扰物的吸附去除

  • 基金项目:

    国家科技支撑计划课题(2012BAJ25B06)

    重庆市科技攻关重点项目(CSTC2012GGB20001)

  • 中图分类号: X522

Removal of endocrine disrupting chemicals from aqueous solution by adsorption using modified ceramicites

  • Fund Project:
  • 摘要: 用CTMAB(十六烷三甲基溴化铵)对陶粒进行改性.实验研究了陶粒改性前后对5种内分泌干扰物EDCs(美托洛尔MTP、磺胺甲噁唑SMZ、卡马西平CBZ、对氯苯氧异丁酸CA、17α-乙炔基雌二醇EE2)的吸附特性.结果表明,CTMAB改性处理对陶粒的孔结构和表面性质都有影响,有效吸附的孔径所占比例和陶粒表面极性升高;室温条件下,EDCs初始浓度和吸附剂浓度均为1 mg/L时,实验用改性陶粒和陶粒达到吸附平衡的时间基本相同,均为5 min左右;改性陶粒能提高大部分EDCs的吸附量,5种内分泌干扰物混合物一起吸附时存在竞争,其中SMZ和MTP竞争力强,CA最弱;吸附机理包括表面物理吸附和分配作用.实验研究拟为改性陶粒应用于水中痕量污染物的处理提供理论依据,支撑保障饮用水处理达标的目的.
  • 加载中
  • [1] Benotti M. J., Trenholm R. A., Vanderford B. J., et al. Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environmental Science & Technology, 2009, 43(3): 597-603
    [2] Yoon Y., Ryu J., Oh J., et al. Occurrence of endocrine disrupting compounds, pharmaceuticals, and personal care products in the Han River (Seoul, South Korea). Science of the Total Environment, 2010, 408(3): 636-643
    [3] Daughton C. G. Non-regulated water contaminants: Emerging research. Environmental Impact Assessment Review, 2004, 24(7-8): 711-732
    [4] Kolpin D. W., Furlong E. T., Meyer M. T., et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: A national reconnaissance survey. Environmental Science & Technology, 2002, 36(6): 1202-1211
    [5] Richardson S. D. Water analysis: Emerging contaminants and current issues. Analytical Chemistry, 2007, 79(12): 4295-4324
    [6] Padhye L. P., Yao Hong, Kung'u F. T., et al. Year-long evaluation on the occurrence and fate of pharmaceuticals, personal care products, and endocrine disrupting chemicals in an urban drinking water treatment plant. Water Research, 2014, 51: 266-276
    [7] Comerton A. M., Andrews R. C., Bagley D. M. Practical overview of analytical methods for endocrine-disrupting compounds, pharmaceuticals and personal care products in water and wastewater. Philosophical Transactions of the Royal Society A, 2009, 367(1904): 3923-3939
    [8] FDA, Food and Drug Administration. Approved Drug Products with Therapeutic Equivalence Evaluations. Rockville, MD: Center for Drug Evaluation and Research, 2013
    [9] Zwiener C. Occurrence and analysis of pharmaceuticals and their transformation products in drinking water treatment. Analytical and Bioanalytical Chemistry, 2007, 387(4): 1159-1162
    [10] Basile T., Petrella A., Boghetich G., et al. Review of endocrine-disrupting-compound removal technologies in water and wastewater treatment plants: An EU perspectives. Industrial & Engineering Chemistry Research, 2011, 50(14): 8389-8401
    [11] Hu Zunfang, Si Xiurong, Zhang Zheyun, et al. Enhanced EDCs removal by membrane fouling during the UF process. Desalination, 2014, 336: 18-23
    [12] Kumar A. K., Mohan S. V. Removal of natural and synthetic endocrine disrupting estrogens by multi-walled carbon nanotubes (MWCNT) as adsorbent: Kinetic and mechanistic evaluation. Separation and Purification Technology, 2012, 87: 22-30
    [13] Cai Nan, Larese-Casanova P. Sorption of carbamazepine by commercial grapheme oxides: A comparative study with granular activated carbon and multiwalled carbon nanotubes. Journal of Colloid and Interface Science, 2014, 426: 152-161
    [14] 阚涛涛, 蒋晓慧, 杨美, 等. CTMAB-膨润土的制备及对甲基橙的吸附. 西华师范大学学报 (自然科学版), 2010, 31(4): 372-377 Kan Taotao, Jiang Xiaohui, Yang Mei, et al. Preparation of CTMAB-bentonite and its adsorption for methyl orange. Journal of China West Normal University (Natural Sciences), 2010, 31(4): 372-377(in Chinese)
    [15] 陈宝梁, 朱利中, 陶澍. 非离子表面活性剂对菲在水/土壤界面间吸附行为的影响. 环境科学学报, 2003, 23(1): 1-5 Chen Baoliang, Zhu Lizhong, Tao Shu. Effect of nonionic surfactant on sorption behavior of phenanthrene on interface between soil and water. Acta Scientiae Circunstantiae, 2003, 23(1): 1-5(in Chinese)
    [16] 李冬冬, 梁达文, 唐嫣葵, 等. 表面活性剂协同膨润土处理染料废水的研究. 环境科学与技术, 2009, 32(1): 158-161 Li Dongdong, Liang Dawen, Tang Yankui, et al. Integrative disposal of dye from wastewater by mixture of surfactant and bentonite. Environmental Science & Technology, 2009, 32(1): 158-161(in Chinese)
    [17] 陈琳. 苯胺基乙腈车间生产废水预处理工艺研究. 重庆: 重庆大学硕士学位论文, 2008 Chen Lin. Study on pre-treatment of N-phenylglycinonitrile production wastewater. Chongqing: Master Dissertation of Chongqing University, 2008(in Chinese)
    [18] 邓朝霞. 蒙脱土有机化改性的研究进展. 广东第二师范学院学报, 2012, 32(5): 57-63 Deng Zhaoxia. Recent progress in organic modification of montmorillonite. Journal of Guangdong University of Education, 2012, 32(5): 57-63(in Chinese)
    [19] 吴建军, 徐仁扣, 肖双成, 等. 阳离子表面活性剂用量对改性沸石吸附铬酸根的影响. 生态与农村环境学报, 2007, 23(3): 82-85 Wu Jianjun, Xu Renkou, Xiao Shuangcheng, et al. Effects of surfactant modifying zeolite on adsorption of chromate. Journal of Ecology and Rural Environment, 2007, 23(3): 82-85(in Chinese)
    [20] Ho Y. S, McKay G. Pseudo-second order model for sorption processes. Process Biochemistry, 1999, 34(5): 451-465
    [21] Özacar M.,Şengil I. A. A kinetic study of metal complex dye sorption onto pine sawdust. Process Biochemistry, 2005, 40(2): 565-572
    [22] Yang Xiaoyan, Al-Duri B. Kinetic modeling of liquid-phase adsorption of reactive dyes on activated carbon. Journal of Colloid and Interface Science, 2005, 287(1): 25-34
    [23] 童锡臻, 石宝友, 解岳, 等. 改性活性炭对水中PFOS的吸附去除研究. 环境科学, 2012, 33(9): 3132-3138 Tong Xizhen, Shi Baoyou, Xie Yue, et al. Adsorption of perfluorooctanesulfonate (PFOS) onto modified activated carbons. Environmental Science, 2012, 33(9): 3132-3138(in Chinese)
    [24] Xia Guoshou, Pignatello J. J. Detailed sorption isotherms of polar and apolar compounds in a high-organic soil. Environmental Science & Technology, 2001, 35(1): 84-94
    [25] Martinez C. R., Iverson B. L. Rethinking the term "pi-stacking". Chemical Science, 2012, 3(7): 2191-2201
    [26] Chang Minyun, Juang R. S. Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay. Journal of Colloid and Interface Science, 2004, 278(1): 18-25
    [27] Ji Liangliang, Liu Fengling, Xu Zhaoyi, et al. Adsorption of pharmaceutical antibiotics on template-synthesized ordered micro-and mesoporous carbons. Environmental Science & Technolgy, 2010, 44(8): 3116-3122
    [28] 解建坤, 岳钦艳, 于慧, 等. 污泥活性炭对活性艳红K-2BP染料的吸附特性研究. 山东大学学报 (理学版), 2007, 42(3): 64-70 Xie Jiankun, Yue Qinyan, Yu Hui, et al. Adsorption properties of sludge activated carbon to brilliant red K-2BP. Journal of Shandong University (Natural Science), 2007, 42(3): 64-70
    [29] Jung C., Park J., Lim K. H., et al. Adsorption of selected endocrine disrupting compounds and pharmaceuticals on activated biochars. Journal of Hazardous Materials, 2013, 263: 702-710
    [30] Cho H. H., Smith B. A., Wnuk J. D., et al. Influence of surface oxides on the adsorption of naphthalene onto multi-walled carbon nanotubes. Environmental Science & Technolgy, 2008, 42(8): 2899-2905
    [31] Chen Wei, Duan Lin, Wang Lilin, et al. Adsorption of hydroxyl-and amino-substituted aromatics to carbon nanotubes. Environmental Science & Technolgy, 2008, 42(18): 6862-6868
  • 加载中
计量
  • 文章访问数:  2205
  • HTML全文浏览数:  1634
  • PDF下载数:  766
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-07-03
  • 刊出日期:  2015-06-09
郭劲松, 林佳琪, 刘靓, 陈猷鹏, 方芳. 改性陶粒对水中内分泌干扰物的吸附去除[J]. 环境工程学报, 2015, 9(6): 2547-2554. doi: 10.12030/j.cjee.20150603
引用本文: 郭劲松, 林佳琪, 刘靓, 陈猷鹏, 方芳. 改性陶粒对水中内分泌干扰物的吸附去除[J]. 环境工程学报, 2015, 9(6): 2547-2554. doi: 10.12030/j.cjee.20150603
Guo Jingsong, Lin Jiaqi, Liu Liang, Chen Youpeng, Fang Fang. Removal of endocrine disrupting chemicals from aqueous solution by adsorption using modified ceramicites[J]. Chinese Journal of Environmental Engineering, 2015, 9(6): 2547-2554. doi: 10.12030/j.cjee.20150603
Citation: Guo Jingsong, Lin Jiaqi, Liu Liang, Chen Youpeng, Fang Fang. Removal of endocrine disrupting chemicals from aqueous solution by adsorption using modified ceramicites[J]. Chinese Journal of Environmental Engineering, 2015, 9(6): 2547-2554. doi: 10.12030/j.cjee.20150603

改性陶粒对水中内分泌干扰物的吸附去除

  • 1.  中国科学院重庆绿色智能技术研究院, 重庆 401122
  • 2.  中国科学院水库水环境重点实验室, 重庆 401122
  • 3.  重庆大学城市建设与环境工程学院, 重庆 400045
基金项目:

国家科技支撑计划课题(2012BAJ25B06)

重庆市科技攻关重点项目(CSTC2012GGB20001)

摘要: 用CTMAB(十六烷三甲基溴化铵)对陶粒进行改性.实验研究了陶粒改性前后对5种内分泌干扰物EDCs(美托洛尔MTP、磺胺甲噁唑SMZ、卡马西平CBZ、对氯苯氧异丁酸CA、17α-乙炔基雌二醇EE2)的吸附特性.结果表明,CTMAB改性处理对陶粒的孔结构和表面性质都有影响,有效吸附的孔径所占比例和陶粒表面极性升高;室温条件下,EDCs初始浓度和吸附剂浓度均为1 mg/L时,实验用改性陶粒和陶粒达到吸附平衡的时间基本相同,均为5 min左右;改性陶粒能提高大部分EDCs的吸附量,5种内分泌干扰物混合物一起吸附时存在竞争,其中SMZ和MTP竞争力强,CA最弱;吸附机理包括表面物理吸附和分配作用.实验研究拟为改性陶粒应用于水中痕量污染物的处理提供理论依据,支撑保障饮用水处理达标的目的.

English Abstract

参考文献 (31)

返回顶部

目录

/

返回文章
返回