不同高岭土体系混凝过程中絮体形态的变化

徐慧, 肖峰, 王东升. 不同高岭土体系混凝过程中絮体形态的变化[J]. 环境工程学报, 2015, 9(7): 3121-3126. doi: 10.12030/j.cjee.20150708
引用本文: 徐慧, 肖峰, 王东升. 不同高岭土体系混凝过程中絮体形态的变化[J]. 环境工程学报, 2015, 9(7): 3121-3126. doi: 10.12030/j.cjee.20150708
Xu Hui, Xiao Feng, Wang Dongsheng. Changes in morphology of flocs formed in different kaolin systems[J]. Chinese Journal of Environmental Engineering, 2015, 9(7): 3121-3126. doi: 10.12030/j.cjee.20150708
Citation: Xu Hui, Xiao Feng, Wang Dongsheng. Changes in morphology of flocs formed in different kaolin systems[J]. Chinese Journal of Environmental Engineering, 2015, 9(7): 3121-3126. doi: 10.12030/j.cjee.20150708

不同高岭土体系混凝过程中絮体形态的变化

  • 基金项目:

    国家自然科学基金杰出青年科学基金资助项目(NSFC(51025830))

    国家自然科学基金资助项目(NSFC(41201498))

  • 中图分类号: X703.1

Changes in morphology of flocs formed in different kaolin systems

  • Fund Project:
  • 摘要: 针对2种高岭土体系进行了不同混凝条件下的混凝实验研究,结果表明,使用AlCl3做混凝剂时,微米级高岭土体系絮体粒径随着颗粒物浓度的增加呈现先增加后减小的趋势。当破碎强度为400 r/min时,恢复因子随颗粒物浓度呈现先下降后升高的趋势,在20 mg/L的颗粒物浓度时达到最低。在颗粒物浓度为10 mg/L时,纳米体系强度因子和恢复因子均小于微米体系。继续增加颗粒物浓度(20 mg/L或40 mg/L),纳米颗粒本身的团聚作用和吸附混凝剂之后的纳米颗粒所起的架桥作用使得在200 r/min破碎强度下强度因子和恢复因子升高。当投加相同投加量的高聚合态聚合氯化铝(Al30)作为混凝剂时,由于其具有较高的电中和能力,所以絮体平衡后的粒径与恢复因子较使用AlCl3时降低。
  • 加载中
  • [1] Xu Hui,Xiao Feng,Wang Dongsheng.Effects of Al2O3 and TiO2 on the coagulation process by Al2(SO4)3 (AS) and PACl in kaolin suspension.Separation and Purification Technology,2014,124:9-17
    [2] 沈伟韧,赵文宽,贺飞,等.TiO2 光催化反应及其在废水处理中的应用.化学进展,1998,10(4):349-361 Shen Weiren,Zhao Wenkuan,He Fei,et al.TiO2-based photocatalysis and its applications for waste water treatment.Process in Chemistry,1998,10(4):349-361(in Chinese)
    [3] Xu Hui,Jiao Ruyuan,Xiao Feng,et al.Relative importance of hydrolyzed Al species (Ala,Alb,Alc) on residual Al and effects of nano-particles (Fe-surface modified TiO2 and Al2O3) on coagulation process.Colloids and Surfaces A,2014,446:139-150
    [4] Xu Hui,Jiao Ruyuan,Xiao Feng,et al.Effects of different coagulants in treatment of TiO2-humic acid (HA) water and the aggregate characterization in different coagulation conditions.Colloids and Surfaces A,2014,446:213-223
    [5] Xu H.,Jiang W.,Xiao F.,et al.The characteristics of flocs and zeta potential in nano-TiO2 system under different coagulation conditions.Colloids and Surfaces A,2014,452:181-188
    [6] Ma J.,Li G.B.,Chen Z.L.,et al.Enhanced coagulation of surface waters with high organic content by permangante preoxidation.Water Science and Technology:Water Supply,2001,1(1):51-62
    [7] Xu Hui,Xiao Feng,Wang Dongsheng,et al.Survey of treatment process in water treatment plant and the characteristics of flocs formed by two new coagulants.Colloids and Surfaces A,2014,456:211-221
    [8] Wang Dongsheng,Sun Wei,Xu Yi,et al.Speciation stability of inorganic polymer flocculant-PACl.Colloids and Surface A,2004,243(1-3):1-10
    [9] Lin J.L.,Huang C.,Chin C.J.M.,et al.Coagulation dynamics of fractal flocs induced by enmeshment and electrostatic patch mechanisms.Water Research,2008,42(17):4457-4466
    [10] 张忠国,栾兆坤,赵颖,等.聚合氯化铝(PACl)混凝絮体的破碎与恢复.环境科学,2007,28(2):346-351 Zhang Zhongguo,Luan Zhaokun,Zhao Ying,et al.Breakage and regrowth of flocs coagulation with polyaluminum chloride (PACl).Environmental Science,2007,28(2):346-351(in Chinese)
    [11] Yukselen M.A.,Gregory J.The effect of rapid mixing on the break-up and re-formation of flocs.Journal of Chemical Technology and Biotechnology,2004,79(7):782-788
    [12] Li Tao,Zhu Zhe,Wang Dongsheng,et al.The strength and fractal dimension characteristics of alum-kaolin flocs.International Journal of Mineral Processing,2007,82(1):23-29
    [13] Solomentseva I.,Bárány S.,Gregory J.The effect of mixing on stability and break-up of aggregates formed from aluminum sulfate hydrolysis products.Colloids and Surfaces A,2007,298(1-2):34-41
    [14] Yu Wenzheng,Gregory J.,Campos L.C.Breakage and re-growth of flocs:Effect of additional doses of coagulant species.Water Research,2011,45(20):6718-6724
    [15] Xiao F.,Lam K.M.,Li X.Y.,et al.PIV characterisation of flocculation dynamics and floc structure in water treatment.Colloids and Surfaces A,2011,379(1-3):27-35
  • 加载中
计量
  • 文章访问数:  2306
  • HTML全文浏览数:  1709
  • PDF下载数:  541
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-06-20
  • 刊出日期:  2015-07-02
徐慧, 肖峰, 王东升. 不同高岭土体系混凝过程中絮体形态的变化[J]. 环境工程学报, 2015, 9(7): 3121-3126. doi: 10.12030/j.cjee.20150708
引用本文: 徐慧, 肖峰, 王东升. 不同高岭土体系混凝过程中絮体形态的变化[J]. 环境工程学报, 2015, 9(7): 3121-3126. doi: 10.12030/j.cjee.20150708
Xu Hui, Xiao Feng, Wang Dongsheng. Changes in morphology of flocs formed in different kaolin systems[J]. Chinese Journal of Environmental Engineering, 2015, 9(7): 3121-3126. doi: 10.12030/j.cjee.20150708
Citation: Xu Hui, Xiao Feng, Wang Dongsheng. Changes in morphology of flocs formed in different kaolin systems[J]. Chinese Journal of Environmental Engineering, 2015, 9(7): 3121-3126. doi: 10.12030/j.cjee.20150708

不同高岭土体系混凝过程中絮体形态的变化

  • 1. 中国科学院生态环境研究中心环境水质学国家重点实验室, 北京 100085
基金项目:

国家自然科学基金杰出青年科学基金资助项目(NSFC(51025830))

国家自然科学基金资助项目(NSFC(41201498))

摘要: 针对2种高岭土体系进行了不同混凝条件下的混凝实验研究,结果表明,使用AlCl3做混凝剂时,微米级高岭土体系絮体粒径随着颗粒物浓度的增加呈现先增加后减小的趋势。当破碎强度为400 r/min时,恢复因子随颗粒物浓度呈现先下降后升高的趋势,在20 mg/L的颗粒物浓度时达到最低。在颗粒物浓度为10 mg/L时,纳米体系强度因子和恢复因子均小于微米体系。继续增加颗粒物浓度(20 mg/L或40 mg/L),纳米颗粒本身的团聚作用和吸附混凝剂之后的纳米颗粒所起的架桥作用使得在200 r/min破碎强度下强度因子和恢复因子升高。当投加相同投加量的高聚合态聚合氯化铝(Al30)作为混凝剂时,由于其具有较高的电中和能力,所以絮体平衡后的粒径与恢复因子较使用AlCl3时降低。

English Abstract

参考文献 (15)

返回顶部

目录

/

返回文章
返回