聚醚酰亚胺功能化磁性纳米微球吸附富集及测定水中痕量镉

盛姣, 曾桂华, 何爱翠, 闫淑梅. 聚醚酰亚胺功能化磁性纳米微球吸附富集及测定水中痕量镉[J]. 环境工程学报, 2015, 9(8): 3815-3820. doi: 10.12030/j.cjee.20150837
引用本文: 盛姣, 曾桂华, 何爱翠, 闫淑梅. 聚醚酰亚胺功能化磁性纳米微球吸附富集及测定水中痕量镉[J]. 环境工程学报, 2015, 9(8): 3815-3820. doi: 10.12030/j.cjee.20150837
Sheng Jiao, Zeng Guihua, He Aicui, Yan Shumei. Adsorption, concentration and determination of trace cadmium in water by polyetherimide modified magnetic microspheres[J]. Chinese Journal of Environmental Engineering, 2015, 9(8): 3815-3820. doi: 10.12030/j.cjee.20150837
Citation: Sheng Jiao, Zeng Guihua, He Aicui, Yan Shumei. Adsorption, concentration and determination of trace cadmium in water by polyetherimide modified magnetic microspheres[J]. Chinese Journal of Environmental Engineering, 2015, 9(8): 3815-3820. doi: 10.12030/j.cjee.20150837

聚醚酰亚胺功能化磁性纳米微球吸附富集及测定水中痕量镉

  • 基金项目:

    湖南省科技计划项目(2012SK3283)

  • 中图分类号: X703

Adsorption, concentration and determination of trace cadmium in water by polyetherimide modified magnetic microspheres

  • Fund Project:
  • 摘要: 利用聚醚酰亚胺修饰纳米磁性微球,制备了一种磁性纳米吸附材料,将其作为固相萃取吸附剂用于富集水体中的痕量镉Cd(Ⅱ)离子,并通过等离子电感耦合发射光谱法测定。利用透射电子显微镜(TEM)、傅里叶变换红外光谱(FIIR)和热重分析仪(TGA)对材料进行了表征,并考察了吸附剂对Cd(Ⅱ)离子的吸附性能,研究了溶液pH值、吸附时间、饱和吸附量、干扰离子、洗脱条件等因素对吸附性能的影响。结果表明,当水样的pH值为5时,振荡吸附15 min 达到平衡,饱和吸附容量为5.61 mg/g。吸附在磁性纳米材料上的Cd(Ⅱ)离子可用5 mL 1.0 mol/L盐酸溶液完全洗脱,然后用等离子电感耦合发射光谱法测定此洗脱液中Cd(Ⅱ)离子的含量。将该方法用于环境水样中痕量Cd(Ⅱ)离子的吸附富集和测定,加标回收率在95.3%~97.8%之间。
  • 加载中
  • [1] Fang Guozhen, Min Guang, He Jinxing, et al. Multiwalled carbon nanotubes as matrix solid-phase dispersion extraction absorbents to determine 31 pesticides in agriculture samples by gas chromatography-mass spectrometry. Journal of Agricultural and Food Chemistry, 2009, 57(1): 3040-3045
    [2] Ezoddin M., Shemirani F., Abdi K., et al. Application of modified nano-alumina as a solid phase extraction sorbent for the preconcentration of Cd and Pb in water and herbal samples prior to flame atomic absorption spectrometry determination. Journal of Hazardous Materials, 2010, 178(1-3): 900-905
    [3] Türker A. R. New sorbents for solid-phase extraction for metal enrichment. Clean-Soil, Air, Water, 2007, 35(6): 548-557
    [4] Slobodník J., Öztezkizan O., Lingeman H., et al. Solid-phase extraction of polar pesticides from environmental water samples on graphitized carbon and empore-activated carbon disks and on-line coupling to octadecyl-bonded silica analytical columns. Journal of Chromatography A, 1996, 750(1-2): 227-238
    [5] Zhang Li, Chang Xijun, Li Zhenhua, et al. Selective solid-phase extraction using oxidized activated carbon modified with triethylenetetramine for preconcentration of metal ions. Journal of Molecular Structure, 2010, 964(1-3): 58-62
    [6] Chen Shizhong, Liu Cheng, Yang Ming, et al. Solid-phase extraction of Cu, Co and Pb on oxidized single-walled carbon nanotubes and their determination by inductively coupled plasma mass spectrometry. Journal of Hazardous Materials, 2009, 170(1): 247-251
    [7] Soylak M., Ercan O. Selective separation and preconcentration of copper (Ⅱ) in environmental samples by the solid phase extraction on multi-walled carbon nanotubes. Journal of Hazardous Materials, 2009, 168(2-3): 1527-1531
    [8] Chandal M., Rempel G. L. Polyethyleneimine gel-coat on silica. High uranium capacity and fast kinetics of gel-coated resin. Reactive Polymers, 1995, 25(1): 25-26
    [9] Ghoul M., Bacquet M., Morcellet M. Uptake of heavy metals from synthetic aqueous solutions using modified PEI-silica gels. Water Research, 2003, 37(4): 729-734
    [10] Chen Hemei, Deng Chunhui, Zhang Xiangmin. Synthesis of Fe3O4@SiO2@PMMA core-shell-shell magnetic microspheres for highly efficient enrichment of peptides and proteins for MALDI-ToF MS analysis. Angewandte Chemie International Edition, 2010, 49(3): 607-611
    [11] Naim R., Ismail A. F. Effect of polymer concentration on the structure and performance of PEI hollow fiber membrane contactor for CO2 stripping. Journal of Hazardous Materials, 2013, 250: 354-361
    [12] Gao Baojiao, Jiang Pengfei, An Fuqiang, et al. Studies on the surface modification of diatomite with polyethyleneimine and trapping effect of the modified diatomite for phenol. Applied Surface Science, 2005, 250(1-4): 273-279
    [13] An Fuqiang, Gao Baojiao, Feng Xiaoqin. Adsorption and recognizing ability of molecular imprinted polymer MIP-PEI/SiO2 towards phenol. Journal of Hazardous Materials, 157(2-3): 286-292
    [14] Guo R, Kuang B, Cheng X. A theoretical CHF model for subcooled flow boiling in curved a channel at low pressure. Annals of Nuclear Energy, 2014, 69: 196-202
    [15] Lakshmanan R., Sanchez-Dominguez M., Matutes-Aquino J. A., et al. Removal of total organic carbon from sewage wastewater using poly(ethylenimine)-functionalized magnetic nanoparticles. Langmuir, 2014, 30(1): 35-42
    [16] Sui Dianpeng, Fan Hongtao, Li Jing, et al. Application of poly (ethyleneimine) solution as a binding agent in DGT technique for measurement of heavy metals in water. Talanta, 2014, 114(9):276-282
  • 加载中
计量
  • 文章访问数:  1993
  • HTML全文浏览数:  1481
  • PDF下载数:  477
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-07-08
  • 刊出日期:  2015-08-13
盛姣, 曾桂华, 何爱翠, 闫淑梅. 聚醚酰亚胺功能化磁性纳米微球吸附富集及测定水中痕量镉[J]. 环境工程学报, 2015, 9(8): 3815-3820. doi: 10.12030/j.cjee.20150837
引用本文: 盛姣, 曾桂华, 何爱翠, 闫淑梅. 聚醚酰亚胺功能化磁性纳米微球吸附富集及测定水中痕量镉[J]. 环境工程学报, 2015, 9(8): 3815-3820. doi: 10.12030/j.cjee.20150837
Sheng Jiao, Zeng Guihua, He Aicui, Yan Shumei. Adsorption, concentration and determination of trace cadmium in water by polyetherimide modified magnetic microspheres[J]. Chinese Journal of Environmental Engineering, 2015, 9(8): 3815-3820. doi: 10.12030/j.cjee.20150837
Citation: Sheng Jiao, Zeng Guihua, He Aicui, Yan Shumei. Adsorption, concentration and determination of trace cadmium in water by polyetherimide modified magnetic microspheres[J]. Chinese Journal of Environmental Engineering, 2015, 9(8): 3815-3820. doi: 10.12030/j.cjee.20150837

聚醚酰亚胺功能化磁性纳米微球吸附富集及测定水中痕量镉

  • 1.  长沙环境保护职业技术学院, 长沙 410000
  • 2.  湖南农业大学植物保护学院, 长沙 410000
基金项目:

湖南省科技计划项目(2012SK3283)

摘要: 利用聚醚酰亚胺修饰纳米磁性微球,制备了一种磁性纳米吸附材料,将其作为固相萃取吸附剂用于富集水体中的痕量镉Cd(Ⅱ)离子,并通过等离子电感耦合发射光谱法测定。利用透射电子显微镜(TEM)、傅里叶变换红外光谱(FIIR)和热重分析仪(TGA)对材料进行了表征,并考察了吸附剂对Cd(Ⅱ)离子的吸附性能,研究了溶液pH值、吸附时间、饱和吸附量、干扰离子、洗脱条件等因素对吸附性能的影响。结果表明,当水样的pH值为5时,振荡吸附15 min 达到平衡,饱和吸附容量为5.61 mg/g。吸附在磁性纳米材料上的Cd(Ⅱ)离子可用5 mL 1.0 mol/L盐酸溶液完全洗脱,然后用等离子电感耦合发射光谱法测定此洗脱液中Cd(Ⅱ)离子的含量。将该方法用于环境水样中痕量Cd(Ⅱ)离子的吸附富集和测定,加标回收率在95.3%~97.8%之间。

English Abstract

参考文献 (16)

返回顶部

目录

/

返回文章
返回