强化混凝过程絮体形态对锑(V)去除效果的影响

贺维鹏, 高源, 童丽, 施周, 刘佳. 强化混凝过程絮体形态对锑(V)去除效果的影响[J]. 环境工程学报, 2015, 9(10): 4773-4779. doi: 10.12030/j.cjee.20151025
引用本文: 贺维鹏, 高源, 童丽, 施周, 刘佳. 强化混凝过程絮体形态对锑(V)去除效果的影响[J]. 环境工程学报, 2015, 9(10): 4773-4779. doi: 10.12030/j.cjee.20151025
He Weipeng, Gao Yuan, Tong Li, Shi Zhou, Liu Jia. Effect of floc morphology on antimony(V) removal efficiency during enhanced coagulation[J]. Chinese Journal of Environmental Engineering, 2015, 9(10): 4773-4779. doi: 10.12030/j.cjee.20151025
Citation: He Weipeng, Gao Yuan, Tong Li, Shi Zhou, Liu Jia. Effect of floc morphology on antimony(V) removal efficiency during enhanced coagulation[J]. Chinese Journal of Environmental Engineering, 2015, 9(10): 4773-4779. doi: 10.12030/j.cjee.20151025

强化混凝过程絮体形态对锑(V)去除效果的影响

  • 基金项目:

    国家自然科学基金资助项目(51308199)

    湖南省自然科学基金资助项目(15JJ6021

    13JJ6027)

    中央高校基本科研业务费资助项目(227201401073)

  • 中图分类号: TU991.2

Effect of floc morphology on antimony(V) removal efficiency during enhanced coagulation

  • Fund Project:
  • 摘要: 利用混凝烧杯试验法,考察聚硫酸铁(PFS)强化混凝去除五价锑(Sb(V))过程中不同混凝条件对絮体形态(包括粒度和结构)以及出水水质的影响。结果表明,絮体平均粒径和分形维数的变化主要取决于主导混凝机理,且能通过作用于混凝效果而影响沉后水中悬浮态Sb(V)含量,但对最终除Sb(V)效果(主要为溶解态)的影响极为有限;原水pH和PFS投量对Sb(V)的去除有重要影响,而温度和混凝搅拌强度的作用却较小,并且助凝剂PAM的投加会在一定程度上削弱去除效果。在实际运行中,还需尽量避免沉后水因微小絮体过多影响后续工艺的运行工况及出水水质等。
  • 加载中
  • [1] Wilson S.C.,Lockwood P.V.,Ashley P.M.,et al.The chemistry and behavior of antimony in the soil environment with comparisons to arsenic:A critical review.Environmental Pollution,2010,158(5):1169-1181
    [2] 何孟常,万红艳.环境中锑的分布、存在形态及毒性和生物有效性.化学进展,2004,16(1):131-135He Mengchang,Wan Hongyan.Distribution,speciation,toxicity and bioavailability of antimony in the environment.Progress in Chemistry,2004,16(1):131-135(in Chinese)
    [3] 李双双,戴友芝,罗春香,等.锑在水中的形态变化及除锑技术现状.化工环保,2009,29(2):131-134Li Shuangshuang,Dai Youzhi,Luo Chunxiang,et al.Morphological changes of antimony in water and status quo of antimony-removal technologies.Environmental Protection of Chemical Industry,2009,29(2):131-134(in Chinese)
    [4] Pletcher D.,Weinberg N.L.The green potential of electrochemistry Part 1:The fundamentals.Chemical Engineering,1992,99(8):98-103
    [5] Kang M.,Kamei T.,Magar Y.Comparing polyaluminum chloride and ferric chloride for antimony removal.Water Research,2003,37(17):4171-4179
    [6] Zhu Jing,Wu Fengchang,Pan Xiangliang,et al.Removal of antimony from antimony mine flotation wastewater by electrocoagulation with aluminum electrodes.Journal of Environmental Sciences,2011,23(7):1066-1071
    [7] 张家兴,王超,杨波,等.电混凝去除水中锑污染物.环境工程学报,2014,8(10):4244-4248Zhang Jiaxing,Wang Chao,Yang Bo,et al.Removal of antimony contaminant in water by electrocoagulation.Chinese Journal of Environmental Engineering,2014,8(10):4244-4248(in Chinese)
    [8] Uluozlu O.D.,Sar A.,Tuzen M.Biosorption of antimony from aqueous solution by lichen(Physcia tribacia) biomass.Chemical Engineering Journal,2010,163(3):382-388
    [9] Li Xuehua,Dou Xiaomin,Li Junqing.Antimony(V) removal from water by iron-zirconium bimetal oxide:Performance and mechanism.Journal of Environmental Sciences,2012,24(7):1197-1203
    [10] Xu Wei,Wang Hongjie,Liu Ruiping,et al.The mechanism of antimony(III) removal and its reactions on the surfaces of Fe-Mn binary oxide.Journal of Colloid and Interface Science,2011,363(1):320-326
    [11] Kang M.,Kawasaki M.,Tamada S.,et al.Effect of pH on the removal of arsenic and antimony using reverse osmosis membranes.Desalination,2000,131(1-3):293-298
    [12] Wu Zhijun,He Mengchang,Guo Xuejun,et al.Removal of antimony(III) and antimony(V) from drinking water by ferric chloride coagulation:Competing ion effect and the mechanism analysis.Separation and Purification Technology,2010,76(2):184-190
    [13] 施周,贺维鹏.饮用水水源中重金属污染防控技术与对策.给水排水,2012,38(8):1-3,94 Shi Zhou,He Weipeng.Prevention and control technology of source water polluted by heavy metals.Water & Wastewater Engineering,2012,38(8):1-3,94(in Chinese)
    [14] Du Xing,Qu Fangshu,Liang Heng,et al.Removal of antimony(III) from polluted surface water using a hybrid coagulation-flocculation-ultrafiltration(CF-UF) process.Chemical Engineering Journal,2014,254:293-301
    [15] 杜星,梁恒,瞿芳术,等.PPC和PFS联用去除水源水中Tl和Sb复合污染.哈尔滨工业大学学报,2013,45(6):33-37 Du Xing,Liang Heng,Qu Fangshu,et al.An approach for thallium and antimony combined pollution removal in drinking water using potassium permanganate composites and polymeric ferric sulfate.Journal of Harbin institution of Technology,2013,45(6):33-37(in Chinese)
    [16] Bubakova P.,Pivokonsky M.,Filip P.Effect of shear rate on aggregate size and structure in the process of aggregation and at steady state.Powder Technology,2013,235:540-549
    [17] 于衍真,孙勇.利用分形维数优化混凝中的能耗分配.供水技术.2011,5(3) :6-9 Yu Yanzhen,Sun Yong.Optimization of energy consumption distribution with fractal dimensionality in coagulation.Water Techonology.2011,5(3) :6-9
    [18] Chakraborti R.K.,Gardner K.H.,Atkinson J.F.,et al.Changes in fractal dimension during aggregation.Water Research,2003,37(4):873-883
    [19] Duan J.M.,Gregory J.Coagulation by hydrolysing metal salts.Advances in Colloid and Interface Science,2003,100-102:475-502
    [20] Wang Y.L.,Feng J.,Dentel S.K.,et al.Effect of polyferric chloride(PFC) doses and pH on the fractal characteristics of PFC-HA flocs.Colloids and Surfaces A:Physicochemical and Engineering Aspects,2011,379(1-3):51-61
    [21] 邬艳,杨艳玲,李星,等.三种常见混凝机理为主导条件下絮体特性研究.中国环境科学,2014,34(1):150-155 Wu Yan,Yang Yanling,Li Xing,et al.Study on flocs characteristics under three common dominant coagulation mechanisms.China Environmental Science,2014,34(1):150-155(in Chinese)
    [22] 池年平.基于分形维数絮凝检测指标的研究.重庆:重庆大学硕士学位论文,2006:30-36 Chi Nianping.Research on flocculation monitoring indexes base on fractal dimension.Chongqing:Master Dissertation of Chongqing University,2006:30-36(in Chinese)
    [23] 朱哲,李涛,王东升,等.阳离子型聚丙烯酰胺投加量对絮体性状特征的影响.环境化学,2007,26(2):175-179 Zhu Zhe,Li Tao,Wang Dongsheng,et al.Effect of cationic of PAM dosage on the micro-properties of flocs.Environmental Chemistry,2007,26(2):175-179(in Chinese)
    [24] 李警阳,张忠国,孙春宝,等.基于分形学的絮凝理论研究进展.化工进展,2012,31(12):2609-2614 Li Jingyang,Zhang Zhongguo,Sun Chunbao,et al.A review of flocculation theories incorporating fractal geometry.Chemical Industry and Engineering Progress,2012,31(12):2609-2614(in Chinese)
    [25] Xiao Feng,Howard Huang Juchang,Zhang Baojie,et al.Effects of low temperature on coagulation kinetics and flocsurface morphology using alum.Desalination,2009,237(1-3):201-213
    [26] 武若冰,王东升,李涛.絮体性能及其工艺调控的研究与进展.环境科学学报,2008,28(4):593-598 Wu Ruobing,Wang Dongsheng,Li Tao.A critical review on floc structure,strength and process control.Acta Scientiae Circumstantiae,2008,28(4):593-598(in Chinese)
    [27] 郑怀礼,龙腾锐,舒型武.聚合铁类絮凝剂絮凝作用机理分析.重庆环境科学,2000,22(5):51-52 Zheng Huaili,Long Tengrui,Shu Xingwu.Analysis on flocculanting action mechanism of polyferrices and its advancement.Chongqing Environmental Science,2000,22(5):51-52
    [28] Biggs C.A.,Lant P.A.Activated sludge flocculation:on-line determination of floc size and the effect of shear.Water Research,2000,34(9):2542-2550.
    [29] 刘利,湛含辉,王晓,等.不同水力条件下悬浮液絮体分形结构的研究.安全与环境工程,2014,21(1):77-82 Liu Li,Zhan Hanhui,Wang Xiao,et al.Research on the fractal structure of floc in the suspension liquid with different hydraulic conditions.Safety and Environmental Engineering,2014,21(1):77-82(in Chinese)
  • 加载中
计量
  • 文章访问数:  1708
  • HTML全文浏览数:  1260
  • PDF下载数:  529
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-06-16
  • 刊出日期:  2015-10-14

强化混凝过程絮体形态对锑(V)去除效果的影响

  • 1. 湖南大学土木工程学院, 长沙 410082
  • 2. 中冶长天国际工程有限责任公司, 长沙 410007
基金项目:

国家自然科学基金资助项目(51308199)

湖南省自然科学基金资助项目(15JJ6021

13JJ6027)

中央高校基本科研业务费资助项目(227201401073)

摘要: 利用混凝烧杯试验法,考察聚硫酸铁(PFS)强化混凝去除五价锑(Sb(V))过程中不同混凝条件对絮体形态(包括粒度和结构)以及出水水质的影响。结果表明,絮体平均粒径和分形维数的变化主要取决于主导混凝机理,且能通过作用于混凝效果而影响沉后水中悬浮态Sb(V)含量,但对最终除Sb(V)效果(主要为溶解态)的影响极为有限;原水pH和PFS投量对Sb(V)的去除有重要影响,而温度和混凝搅拌强度的作用却较小,并且助凝剂PAM的投加会在一定程度上削弱去除效果。在实际运行中,还需尽量避免沉后水因微小絮体过多影响后续工艺的运行工况及出水水质等。

English Abstract

参考文献 (29)

目录

/

返回文章
返回