焦化废水中总氮的构成及在生物工艺中的转化

吕鹏飞, 刘雷, 吴海珍, 韦朝海. 焦化废水中总氮的构成及在生物工艺中的转化[J]. 环境工程学报, 2015, 9(10): 4789-4796. doi: 10.12030/j.cjee.20151027
引用本文: 吕鹏飞, 刘雷, 吴海珍, 韦朝海. 焦化废水中总氮的构成及在生物工艺中的转化[J]. 环境工程学报, 2015, 9(10): 4789-4796. doi: 10.12030/j.cjee.20151027
Lv Pengfei, Liu Lei, Wu Haizhen, Wei Chaohai. Composition of nitrogeous compounds in coking wastewater and their transformation during biological treatment process[J]. Chinese Journal of Environmental Engineering, 2015, 9(10): 4789-4796. doi: 10.12030/j.cjee.20151027
Citation: Lv Pengfei, Liu Lei, Wu Haizhen, Wei Chaohai. Composition of nitrogeous compounds in coking wastewater and their transformation during biological treatment process[J]. Chinese Journal of Environmental Engineering, 2015, 9(10): 4789-4796. doi: 10.12030/j.cjee.20151027

焦化废水中总氮的构成及在生物工艺中的转化

  • 基金项目:

    国家自然科学基金资助项目(21037001,51278199,21377040)

  • 中图分类号: X703

Composition of nitrogeous compounds in coking wastewater and their transformation during biological treatment process

  • Fund Project:
  • 摘要: 为了明确焦化废水中总氮的构成及在生物工艺中的转化利用,统计分析了总氮及5种无机含氮化合物在A/O1/O2、A/O1/H/O2和O1/H/O2 3个生物处理工艺中的浓度变化,结合模拟实验研究好氧反应中含氮化合物的氨化作用,并探索高浓度氨氮情况下硝化作用的条件控制。结果表明,总氮由氨氮、硫氰化物、氰化物和有机含氮化合物等构成;氨氮和硫氰化物占总氮比例超过80%,是主要贡献者。模拟实验中在COD和SCN-浓度为4 465和1 238 mg/L水质状况下,控制温度17~19℃、pH 7~7.5、溶解氧 1~5 mg/L、SV30为30%,连续曝气50.5 h时实现COD和SCN-去除率达90%和99%。在O1/H/O2工艺二级好氧池中,氨氮浓度380~400 mg/L时,控制温度23~27℃、pH为7.8~8.3条件下,调试运行23 d实现完全硝化作用。研究证明,影响氨化过程与硝化过程效率的因素包括水质、温度、pH、污泥浓度与停留时间等。
  • 加载中
  • [1] 张万辉,韦朝海,晏波,等.焦化废水中溶解性有机物组分的特征分析.环境化学,2012,31(5):702-707Zhang W.H.,Wei C.H.,Yan B.,et al.Composition characterization of dissolved organic matters in coking wastewat.Environmental Chemistry,2012,31(5):702-707(in Chinese)
    [2] Maranon E.,Vazquez I.,Rodriguez J.,et al.Coke wastewater treatment by a three-step activated sludge system.Water,Air and Soil Pollution,2008,192(1-4):155-164
    [3] 吴海珍,刁春鹏,冯春华,等.生物流化床处理焦化废水工艺实践及其技术效果分析.广西:中国环境科学年会 2012.1716-1727
    [4] 潘霞霞,黄会静,冯春华,等.焦化废水中硫氰化物的快速检测方法.煤化工,2011,152(1):15-18Pan X.X.,Huang H.Z.,Feng C.H.,et al.Rapid determination of thiocyanate in coking wastewater.Coal Chemical Inndustry,2011,152(1):15-18(in Chinese)
    [5] 夏君,龚俊杰.焦化废水中主要五种无机态氮含量与总氮含量的关系.冶金分析.2013,33(4):75-80Xia J.,Gong J.J.,The relationship of the content of five main inorganic nitride with total nitrogen in the coking waste water.Metallurgical Analysis,2013,33(4):75-80(in Chinese)
    [6] 易欣怡,韦朝海,吴超飞,等.O/H/O生物工艺中焦化废水含氮化合物的识别与转化.环境科学学报,2014,34(9):2190-2198Yi X.Y.,Wei C.H.,Wu C.F.,et al.Identification and transformation of nitrogen compounds in coking wastewater during O/H/O biological treatment process.Acta Scientiae Circumstantiae,2014,34(9):2190-2198(in Chinese)
    [7] 刘显清,李国保,吴海珍,等.酚类化合物在焦化废水处理过程中的降解与转移.环境化学,2012,10(10):1487-1493Liu X.Q.,Li B.G.,Wu H.Z.,et al.The degradation and transfer of phenolic compounds during the treatment processes of coking wastewater.Environmental Chemistry,2012,10(10):1487-1493(in Chinese)
    [8] Kwon H.K.,Woo S.H.,Park J.M.Thiocyanate degradation by Acremonium strictum and inhibition by secondary toxicants.Biotechnology Letters,2002,24(16):1347-1351
    [9] 潘霞霞,李媛媛,黄会静,等.焦化废水中硫氰化物的生物降解及其与苯酚、氨氮的交互影响.化工学报,2009,12(12):3089-3096Pan X.X.,Li Y.Y.,Huang H.J.,et al.Biodegradation of thiocyanate and inhibitory interaction with phenol,ammonia in coking wastewater.CIESC Journal,2009,12(12):3089-3096(in Chinese)
    [10] Kim Y.M.,Lee D.S.,Park C.,et al.Effects of free cyanide on microbial communities and biological carbon and nitrogen removal performance in the industrial activated sludge process.Water Research,2011,45(3):1267-1279
    [11] Li H.Q.,Han H.J.,Du M.A.,et al.Removal of phenols,thiocyanate and ammonium from coal gasification wastewater using moving bed biofilm reactor.Bioresource Technology,2011,102(7):4667-4673
    [12] Anthonisen A.C.,Loehr R.C.,Prakasam T.B.,et al.Inhibition of nitrification by ammonia and nitrous acid.Journal -Water Pollution Control Federation,1976,48(5):835-852
    [13] Vadivelu V.M.,Yuan Z.G.,Fux C.,et al.The inhibitory effects of free nitrous acid on the energy generation and growth processes of an enriched Nitrobacter culture.Environmental Science & Technology,2006,40(14):4442-4448
    [14] Vadivelu V.M.,Keller J.,Yuan Z.G.Effect of free ammonia and free nitrous acid concentration on the anabolic and catabolic processes of an enriched Nitrosomonas culture.Biotechnology and Bioengineering,2006,95(5):830-839
    [15] 张宇坤,王淑莹,董怡君,等.游离氨和游离亚硝酸对亚硝态氮氧化菌活性的影响.中国环境科学,2014,34(5):1242-1247 Zhang Y.K.,Wang S.Y.,Dong Y.J.,et al.Effect of FA and FNA on activity of nitrite-oxidising bacteria.China Environmental Science,2014,34(5):1242-1247(in Chinese)
  • 加载中
计量
  • 文章访问数:  1767
  • HTML全文浏览数:  1331
  • PDF下载数:  419
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-05-30
  • 刊出日期:  2015-10-14

焦化废水中总氮的构成及在生物工艺中的转化

  • 1.  华南理工大学环境与能源学院, 广州 510006
  • 2.  华南理工大学生物科学与工程学院, 广州 510006
  • 3.  工业聚集区污染控制与生态修复教育部重点实验室, 广州 510006
基金项目:

国家自然科学基金资助项目(21037001,51278199,21377040)

摘要: 为了明确焦化废水中总氮的构成及在生物工艺中的转化利用,统计分析了总氮及5种无机含氮化合物在A/O1/O2、A/O1/H/O2和O1/H/O2 3个生物处理工艺中的浓度变化,结合模拟实验研究好氧反应中含氮化合物的氨化作用,并探索高浓度氨氮情况下硝化作用的条件控制。结果表明,总氮由氨氮、硫氰化物、氰化物和有机含氮化合物等构成;氨氮和硫氰化物占总氮比例超过80%,是主要贡献者。模拟实验中在COD和SCN-浓度为4 465和1 238 mg/L水质状况下,控制温度17~19℃、pH 7~7.5、溶解氧 1~5 mg/L、SV30为30%,连续曝气50.5 h时实现COD和SCN-去除率达90%和99%。在O1/H/O2工艺二级好氧池中,氨氮浓度380~400 mg/L时,控制温度23~27℃、pH为7.8~8.3条件下,调试运行23 d实现完全硝化作用。研究证明,影响氨化过程与硝化过程效率的因素包括水质、温度、pH、污泥浓度与停留时间等。

English Abstract

参考文献 (15)

目录

/

返回文章
返回