温度和底物浓度对混合菌群木糖厌氧生物产氢的影响

张丹丹, 邱春生, 孙力平, 谢春雨, 胡鑫. 温度和底物浓度对混合菌群木糖厌氧生物产氢的影响[J]. 环境工程学报, 2015, 9(11): 5155-5160. doi: 10.12030/j.cjee.20151104
引用本文: 张丹丹, 邱春生, 孙力平, 谢春雨, 胡鑫. 温度和底物浓度对混合菌群木糖厌氧生物产氢的影响[J]. 环境工程学报, 2015, 9(11): 5155-5160. doi: 10.12030/j.cjee.20151104
Zhang Dandan, Qiu Chunsheng, Sun Liping, Xie Chunyu, Hu Xin. Effects of temperature and substrate concentration on biological hydrogen production from xylose by mixed culture[J]. Chinese Journal of Environmental Engineering, 2015, 9(11): 5155-5160. doi: 10.12030/j.cjee.20151104
Citation: Zhang Dandan, Qiu Chunsheng, Sun Liping, Xie Chunyu, Hu Xin. Effects of temperature and substrate concentration on biological hydrogen production from xylose by mixed culture[J]. Chinese Journal of Environmental Engineering, 2015, 9(11): 5155-5160. doi: 10.12030/j.cjee.20151104

温度和底物浓度对混合菌群木糖厌氧生物产氢的影响

  • 基金项目:

    国家自然科学基金资助项目(21206106)

    国家"水体污染控制与治理"科技重大专项(2012ZX07308-002)

  • 中图分类号: X172

Effects of temperature and substrate concentration on biological hydrogen production from xylose by mixed culture

  • Fund Project:
  • 摘要: 为了获得混合菌群利用木糖进行厌氧发酵产氢的最佳条件,通过批次实验,对中温(35℃)和高温(55℃)下混合菌群利用不同浓度木糖(10~50 g/L)厌氧发酵产氢系统进行了研究。结果表明,35℃下系统累积产氢量和最大氢气产率在底物浓度30 g/L时获得,乙醇和乙酸为主要产氢副产物,但继续提高底物浓度会造成系统VFAs的积累与pH下降,不利于木糖代谢产氢;而55℃下累积产氢量和氢气产率随底物浓度升高持续增长,乙醇为系统主要产氢副产物,VFAs累积量较少。高温下,虽然最大氢气产率和底物木糖降解量比35℃下的低,但有利于获得较为稳定的氢气产量,产氢系统在高底物浓度下也可保持较高的木糖降解率和较为稳定的pH,有利于木糖代谢产氢。
  • 加载中
  • [1] Ni Meng, Leung D. Y. C., Leung M. K. H., et al. An overview of hydrogen production from biomass. Fuel Processing Technology, 2006, 87(5): 461-472
    [2] Gao Peiji, Qu Yinbo, Zhao Xin, et al. Screening microbial strain for improving the nutritional value of wheat and corn straws as animal feed. Enzyme and Microbial Technology, 1997, 20(8): 581-584
    [3] Sarkar N., Ghosh S. K., Bannerjee S., et al. Bioethanol production from agricultural wastes: An overview. Renewable Energy, 2012, 37(1): 19-27
    [4] 樊超, 邱忠平, 华建军. 农业废弃物发酵生产乙醇研究进展. 安徽农业科学, 2011, 39(32): 19961-19964 Fan Chao, Qiu Zhongping, Hua Jianjun. Research progress of ethanol production from the fermentation of agricultural waste. Journal of Anhui Agricultural Science, 2011, 39(32): 19961-19964(in Chinese)
    [5] Buaban B., Inoue H., Yano S., et al. Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis. Journal of Bioscience and Bioengineering, 2010, 110(1): 18-25
    [6] Takahashi C. M., de Carvalho Lima K. G., Takahashi D. F., et al. Fermentation of sugar cane bagasse hemicellulosic hydrolysate and sugar mixtures to ethanol by recombinant Escherichia coli KO11. World Journal of Microbiology and Biotechnology, 2000, 16(8-9): 829-834
    [7] Kongjan P., Min B., Angelidaki I. Biohydrogen production from xylose at extreme thermophilic temperatures(70℃) by mixed culture fermentation. Water Research, 2009, 43(5): 1414-1424
    [8] Ren Nan, Wang Aijie, Cao Guangli, et al. Bioconversion of lignocellulosic biomass to hydrogen: Potential and challenges. Biotechnology Advances, 2009, 27(6): 1051-1060
    [9] Mu Yang, Zheng Xianjun, Yu Hanqing, et al. Biological hydrogen production by anaerobic sludge at various temperatures. International Journal of Hydrogen Energy, 2006, 31(6): 780-785
    [10] Zhang Yongfang, Shen Jianquan. Effect of temperature and iron concentration on the growth and hydrogen production of mixed bacteria. International Journal of Hydrogen Energy, 2006, 31(4): 441-446
    [11] Cakır A., Ozmihci S., Kargi F. Comparison of bio-hydrogen production from hydrolyzed wheat starch by mesophilic and thermophilic dark fermentation. International Journal of Hydrogen Energy, 2010, 35(24): 13214-13218
    [12] Dong Fang, Li Wenwei, Sheng Guoping, et al. An online-monitored thermophilic hydrogen production UASB reactor for long-term stable operation. International Journal of Hydrogen Energy, 2011, 36(21): 13559-13565
    [13] Intanoo P., Rangsunvigit P., Namprohm W., et al. Hydrogen production from alcohol wastewater by an anaerobic sequencing batch reactor under thermophilic operation: Nitrogen and phosphorous uptakes and transformation. International Journal of Hydrogen Energy, 2012, 37(15): 11104-11112
    [14] Kargi F., Eren N. S., Ozmihci S. Bio-hydrogen production from cheese whey powder(CWP) solution: Comparison of thermophilic and mesophilic dark fermentations. International Journal of Hydrogen Energy, 2012, 37(10): 8338-8342
    [15] Lin C.Y., Wu C.C., Wu J. H., et al. Effect of cultivation temperature on fermentative hydrogen production from xylose by a mixed culture. Biomass and Bioenergy, 2008, 32(12): 1109-1115
    [16] Wang Jianlong, Wan Wei. Factors influencing fermentative hydrogen production: A review. International Journal of Hydrogen Energy, 2009, 34(2): 799-811
    [17] Lo Y. C., Chen Wenming, Hung C. H., et al. Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: Feas瑩敢物湬慩瑴楹漠湡慮汤??潩畮牥湴慩汣?潳晴??祩摥牳漮朠敗湡??湲攠牒来祳???っ?水?′??????′???????827-842
    [18] Yan Yuegen, Tay J. H. Characterisation of the granulation process during UASB start-up. Water Research, 1997, 31(7): 1573-1580
    [19] Yu H. Q., Fang H., Tay J. H. Effects of Fe2+ on sludge granulation in upflow anaerobic sludge blanket reactors. Water Science and Technology, 2000, 41(12): 199-206
    [20] Demirel B., Scherer P. Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass and Bioenergy, 2011, 35(3): 992-998
    [21] Qiu Chunsheng, Wen Jianping, Jia Xiaoqiang. Extreme-thermophilic biohydrogen production from lignocellulosic bioethanol distillery wastewater with community analysis of hydrogen-producing microflora. International Journal of Hydrogen Energy, 2011, 36(14): 8243-8251
    [22] Dubois M., Gilles K., Hamilton J. K., et al. A colorimetric method for the determination of sugars. Nature, 1951, 168(4265): 167
    [23] DuBois M., Gilles K. A., Hamilton J. K., et al. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 1956, 28(3): 350-356
    [24] DS1945-03,气相色谱法分析天然气的测试方法
    [25] Roy S., Ghosh S., Das D. Improvement of hydrogen production with thermophilic mixed culture from rice spent wash of distillery industry. International Journal of Hydrogen Energy, 2012, 37(21): 15867-15874
    [26] Playne M. J. Determination of ethanol, volatile fatty acids, lactic and succinic acids in fermentation liquids by gas chromatography. Journal of the Science of Food and Agriculture, 1985, 36(8): 638-644
    [27] 李建政, 任南琪, 秦智. 有机废水产酸发酵典型类型的产氢能力. 武汉理工大学学报, 2006, 28(专辑Ⅱ): 191-195 Li Jianzheng, Ren Nanqi, Qin Zhi. Hydrogen production rates of three typical anaerobic acidogenic fermentations from organic wastewater. Journal of Wuhan University of Technology, 2006, 28(SⅡ): 191-195(in Chinese)
    [28] Han Wei, Chen Hong, Jiao Anying, et al. Biological fermentative hydrogen and ethanol production using continuous stirred tank reactor. In
  • 加载中
计量
  • 文章访问数:  1406
  • HTML全文浏览数:  961
  • PDF下载数:  524
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-08-30
  • 刊出日期:  2015-11-18
张丹丹, 邱春生, 孙力平, 谢春雨, 胡鑫. 温度和底物浓度对混合菌群木糖厌氧生物产氢的影响[J]. 环境工程学报, 2015, 9(11): 5155-5160. doi: 10.12030/j.cjee.20151104
引用本文: 张丹丹, 邱春生, 孙力平, 谢春雨, 胡鑫. 温度和底物浓度对混合菌群木糖厌氧生物产氢的影响[J]. 环境工程学报, 2015, 9(11): 5155-5160. doi: 10.12030/j.cjee.20151104
Zhang Dandan, Qiu Chunsheng, Sun Liping, Xie Chunyu, Hu Xin. Effects of temperature and substrate concentration on biological hydrogen production from xylose by mixed culture[J]. Chinese Journal of Environmental Engineering, 2015, 9(11): 5155-5160. doi: 10.12030/j.cjee.20151104
Citation: Zhang Dandan, Qiu Chunsheng, Sun Liping, Xie Chunyu, Hu Xin. Effects of temperature and substrate concentration on biological hydrogen production from xylose by mixed culture[J]. Chinese Journal of Environmental Engineering, 2015, 9(11): 5155-5160. doi: 10.12030/j.cjee.20151104

温度和底物浓度对混合菌群木糖厌氧生物产氢的影响

  • 1.  天津城建大学环境与市政工程学院, 天津 300384
  • 2.  天津市水质科学与技术重点实验室, 天津 300384
  • 3.  国网陕西省电力公司信息通讯公司, 西安 710004
基金项目:

国家自然科学基金资助项目(21206106)

国家"水体污染控制与治理"科技重大专项(2012ZX07308-002)

摘要: 为了获得混合菌群利用木糖进行厌氧发酵产氢的最佳条件,通过批次实验,对中温(35℃)和高温(55℃)下混合菌群利用不同浓度木糖(10~50 g/L)厌氧发酵产氢系统进行了研究。结果表明,35℃下系统累积产氢量和最大氢气产率在底物浓度30 g/L时获得,乙醇和乙酸为主要产氢副产物,但继续提高底物浓度会造成系统VFAs的积累与pH下降,不利于木糖代谢产氢;而55℃下累积产氢量和氢气产率随底物浓度升高持续增长,乙醇为系统主要产氢副产物,VFAs累积量较少。高温下,虽然最大氢气产率和底物木糖降解量比35℃下的低,但有利于获得较为稳定的氢气产量,产氢系统在高底物浓度下也可保持较高的木糖降解率和较为稳定的pH,有利于木糖代谢产氢。

English Abstract

参考文献 (28)

返回顶部

目录

/

返回文章
返回