蠡河底泥中氨氧化细菌复合菌群的富集和过程中群落结构的变化

雍佳君, 成小英. 蠡河底泥中氨氧化细菌复合菌群的富集和过程中群落结构的变化[J]. 环境工程学报, 2015, 9(11): 5173-5181. doi: 10.12030/j.cjee.20151107
引用本文: 雍佳君, 成小英. 蠡河底泥中氨氧化细菌复合菌群的富集和过程中群落结构的变化[J]. 环境工程学报, 2015, 9(11): 5173-5181. doi: 10.12030/j.cjee.20151107
Yong Jiajun, Cheng Xiaoying. Enrichments of AOB composite flora in Lihe River's sediment and changes of bacterial community structure in the process[J]. Chinese Journal of Environmental Engineering, 2015, 9(11): 5173-5181. doi: 10.12030/j.cjee.20151107
Citation: Yong Jiajun, Cheng Xiaoying. Enrichments of AOB composite flora in Lihe River's sediment and changes of bacterial community structure in the process[J]. Chinese Journal of Environmental Engineering, 2015, 9(11): 5173-5181. doi: 10.12030/j.cjee.20151107

蠡河底泥中氨氧化细菌复合菌群的富集和过程中群落结构的变化

  • 基金项目:

    国家"水体污染控制与治理"科技重大专项(2012ZX0701-013-04)

  • 中图分类号: X172

Enrichments of AOB composite flora in Lihe River's sediment and changes of bacterial community structure in the process

  • Fund Project:
  • 摘要: 从蠡河底泥中富集氨氧化细菌(AOB)复合菌群,研究富集AOB复合菌群不同培养阶段氨氮(NH4+-N)去除率及氨氧化速率,通过单因素法和响应面法(RSM)分析AOB复合菌群最大活性的富集条件,采用PCR-DGGE研究富集阶段Ⅱ和最大活性阶段AOB复合菌群的群落结构变化。实验结果表明,AOB复合菌群在富集阶段Ⅲ时, 1.5 d内NH4+-N去除率达到95.9%,氨氧化速率达到4.16 mg/(L·h),AOB复合菌群的活性达到最大;富集培养最佳条件是,NH4+-N初始浓度(I-NH4+-N)为403.26 mg/L,pH为7.96,C/N为1.47:1,温度为29.79℃,碳源为柠檬酸钠,AOB复合菌群氨氧化速率达最大,为10.63 mg/(L·h);2个实验阶段AOB复合菌群群落结构发生很大变化,共富集6株AOB菌株,属于Comamonas sp.,Acidovorax sp.,Rhizobium sp.和Diaphorobacter,编号LHA4是绝对优势菌株,属于Comamonas sp.,相似性为98%。
  • 加载中
  • [1] 吴雅丽, 许海, 杨桂军, 等. 太湖水体氮素污染状况研究进展. 湖泊科学, 2014, 26(1): 19-28 Wu Yali, Xu Hai, Yang Guijun, et al. Progress in nitrogen pollution research in Lake Taihu. Journal of Lake Science, 2014, 26(1): 19-28(in Chinese)
    [2] 石小荣, 李梅, 崔益斌, 等. 以太湖流域为例探讨我国淡水生物氨氮基准. 环境科学学报, 2012, 32(6): 1406-1414 Shi Xiaorong, Li Mei, Cui Yibin, et al. Development of aquatic water quality criteria for ammonia in freshwater ecosystem of China based on Lake Tai basin. Acta Scientiae Circumstantiae, 2012, 32(6): 1406-1414(in Chinese)
    [3] Ye R. W., Thomas S. M. Microbial nitrogen cycles: Physiology, genomics and applications. Current Opinion in Microbiology, 2001, 4(3): 307-312
    [4] Zeng Yang, De Guardia A., Ziebal C., et al. Impact of biodegradation of organic matters on ammonia oxidation in compost. Bioresource Technology, 2013, 136: 49-57
    [5] 王国祥, 濮培民, 黄宜凯, 等. 太湖反硝化、硝化、亚硝化及氨化细菌分布及其作用. 应用与环境生物学报, 1998, 5(2): 190-194 Wang Guoxiang, Pu Peimin, Huang Yikai, et al. Distribution and role of denitrifying, nitrifying, nitrosation and ammonifying bacteria in the Taihu Lake. Chinese Journal of Applied & Environmental Biology, 1998, 5(2): 190-194(in Chinese)
    [6] Hooper A. B., Vannelli T., Bergmann D. J., et al. Enzymology of the oxidation of ammonia to nitrite by bacteria. Antonie van Leeuwenhoek, 1997, 71(1-2): 59-67
    [7] 刘志培, 刘双江. 硝化作用微生物的分子生物学研究进展. 应用与环境生物学, 2004, 10(4): 521-525 Liu Zhipei, Liu Shuangjiang. Advances in the molecular biology of nitrifying microorganisms. Chinese Journal of Applied & Environmental Biology, 2004, 10(4): 521-525(in Chinese)
    [8] Waheed H., Hashmi I., Naveed A. K., et al. Molecular detection of microbial community in a nitrifying-denitrifying activated sludge system. International Biodeterioration & Biodegradation, 2013, 85: 527-532
    [9] 杨浩锋, 谢柳, 周俊利, 等. 一株氨氧化细菌的分离鉴定及其氨氧化特性. 基因组学与应用生物学, 2013, 32(4): 453-458 Yang Haofeng, Xie Liu, Zhou Junli, et al. Isolation, identification and characteristics of an ammonia oxidizing bacterium. Genomics and Applied Biology, 2013, 32(4): 453-458(in Chinese)
    [10] Grothe E., Moo-Young M.,a Chisti Y. Fermentation optimization for the production of poly(β-hydroxybutyric acid) microbial thermoplastic. Enzyme and Microbial Technology, 1999, 25: 132-141
    [11] 张明. 硝化细菌应用技术研究. 上海: 华东师范大学博士学位论文, 2003 Zhang Ming. Research on the application technology of nitrifying bacteria. Shanghai: Doctor Dissertation of East China Normal University, 2003(in Chinese)
    [12] 刘涛.基于亚硝化的全程自养脱氮工艺(CANON)效能及微生物特征研究. 哈尔滨: 哈尔滨工业大学博士学位论文, 2013 Liu Tao. Autotrophic nitrification denitrification process based on(CANON) and microbial characteristics of efficiency. Harbin: Doctor Dissertation of Harbin Institute of Technology, 2013(in Chinese)
    [13] Liu Guoqiang, Wang Jianmin. Long-term low DO enriches and shifts nitrifier community in activated sludge. Environmental Science & Technology, 2013, 47(10): 5109-5117
    [14] Grunditz C., Dalhammar G. Development of nitrification inhibition assays using pure cultures of nitrosomonas and nitrobacter. Water Reserch, 2001, 35(2): 433-440
    [15] 杨浩锋. 脱氮细菌的分离及脱氮特性研究. 杭州: 浙江大学硕士学位论文, 2013 Yang Haofeng. Isolation and characteristics of nitrogen removal bacteria. Hangzhou: Master Dissertation of Zhejiang University, 2013(in Chinese)
    [16] Terada A., Sugawara S., Yamamoto T., et al. Physiological characteristics of predominant ammonia-oxidizing bacteria enriched from bioreactors with different influent supply regimes. Biochemical Engineering Journal, 2013, 79: 153-161
    [17] Pereira A. D., Leal C. D., Dias M. F., et al. Effect of phenol on the nitrogen removal performance and microbial community structure and composition of an anammox reactor. Bioresource Technology, 2014, 166: 103-111
    [18] 刘强, 李大平, 胡杰, 等. 不同有机碳与无机氨氮比(C/N)下自养硝化生物膜上微生物菌群的变化. 四川大学学报(自然科学版), 2008, 45(3): 663-668 Liu Qiang, Li Daping, Hu Jie, et al. The community structure changes of autotrophic nitrifying biofilms analyzed different C/N. Journal of Sichuan University(Natural Science Edition), 2008, 45(3): 663-668(in Chinese)
    [19] Bai Yaohui, Sun Qinghua, Sun Renhua, et al. Bioaugmentation and adsorption treatment of coking wastewater containing pyridine and quinoline using zeolite-biological aerated filters. Environmental Science & Technology, 2011, 45(5): 1940-1948
    [20] 徐影, 仇天雷, 韩梅琳, 等. PCR-DGGE技术解析固体碳源表面生物膜的微生物群落结构. 环境科学, 2013, 34(8): 3257-3263 Xu Ying, Qiu Tianlei, Han Meilin, et al. Analysis on microbial community in biofilm coating onto solid carbon source using the PCR-DGGE technique. Environmental Science, 2013, 34(8): 3257-3263(in Chinese)
    [21] 李正魁, 杨竹攸, 赖鼎东, 等. 影响固定化纯种氨氧化细菌Comamonas aquatic LNL3短程硝化过程因素动力学分析. 核技术, 2009, 32(4): 292-297 Li Zhengkui, Yang Zhuyou, Lai Dingdong, et al. Analysis of kinetics model for affective factor to short-cut nitrification by immobilized Comamonas aquatic LNL3. Nuclear Techniques, 2009, 32(4): 292-297(in Chinese)
    [22] 方苹. 单细胞酶系耦合催化氨氧化脱除氨氮的研究. 南京: 南京大学硕士学位论文, 2004 Fang Ping. Study on bio-technology of ammonium removal by coupling enzymatic oxidation in single cell. Nanjing: Master Dissertation of Nanjing University, 2004(in Chinese)
  • 加载中
计量
  • 文章访问数:  1701
  • HTML全文浏览数:  1155
  • PDF下载数:  465
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-09-30
  • 刊出日期:  2015-11-18
雍佳君, 成小英. 蠡河底泥中氨氧化细菌复合菌群的富集和过程中群落结构的变化[J]. 环境工程学报, 2015, 9(11): 5173-5181. doi: 10.12030/j.cjee.20151107
引用本文: 雍佳君, 成小英. 蠡河底泥中氨氧化细菌复合菌群的富集和过程中群落结构的变化[J]. 环境工程学报, 2015, 9(11): 5173-5181. doi: 10.12030/j.cjee.20151107
Yong Jiajun, Cheng Xiaoying. Enrichments of AOB composite flora in Lihe River's sediment and changes of bacterial community structure in the process[J]. Chinese Journal of Environmental Engineering, 2015, 9(11): 5173-5181. doi: 10.12030/j.cjee.20151107
Citation: Yong Jiajun, Cheng Xiaoying. Enrichments of AOB composite flora in Lihe River's sediment and changes of bacterial community structure in the process[J]. Chinese Journal of Environmental Engineering, 2015, 9(11): 5173-5181. doi: 10.12030/j.cjee.20151107

蠡河底泥中氨氧化细菌复合菌群的富集和过程中群落结构的变化

  • 1. 江南大学环境与土木工程学院, 无锡 214122
基金项目:

国家"水体污染控制与治理"科技重大专项(2012ZX0701-013-04)

摘要: 从蠡河底泥中富集氨氧化细菌(AOB)复合菌群,研究富集AOB复合菌群不同培养阶段氨氮(NH4+-N)去除率及氨氧化速率,通过单因素法和响应面法(RSM)分析AOB复合菌群最大活性的富集条件,采用PCR-DGGE研究富集阶段Ⅱ和最大活性阶段AOB复合菌群的群落结构变化。实验结果表明,AOB复合菌群在富集阶段Ⅲ时, 1.5 d内NH4+-N去除率达到95.9%,氨氧化速率达到4.16 mg/(L·h),AOB复合菌群的活性达到最大;富集培养最佳条件是,NH4+-N初始浓度(I-NH4+-N)为403.26 mg/L,pH为7.96,C/N为1.47:1,温度为29.79℃,碳源为柠檬酸钠,AOB复合菌群氨氧化速率达最大,为10.63 mg/(L·h);2个实验阶段AOB复合菌群群落结构发生很大变化,共富集6株AOB菌株,属于Comamonas sp.,Acidovorax sp.,Rhizobium sp.和Diaphorobacter,编号LHA4是绝对优势菌株,属于Comamonas sp.,相似性为98%。

English Abstract

参考文献 (22)

返回顶部

目录

/

返回文章
返回