半-IPN羧甲基纤维素/聚(丙烯酰胺-共-甲基丙烯酸钠)水凝胶制备及其吸附性能

张敏, 李碧婵, 陈良壁. 半-IPN羧甲基纤维素/聚(丙烯酰胺-共-甲基丙烯酸钠)水凝胶制备及其吸附性能[J]. 环境工程学报, 2015, 9(11): 5243-5248. doi: 10.12030/j.cjee.20151118
引用本文: 张敏, 李碧婵, 陈良壁. 半-IPN羧甲基纤维素/聚(丙烯酰胺-共-甲基丙烯酸钠)水凝胶制备及其吸附性能[J]. 环境工程学报, 2015, 9(11): 5243-5248. doi: 10.12030/j.cjee.20151118
Zhang Min, Li Bichan, Chen Liangbi. Fabrication of semi-IPN carboxymethyl cellulose/poly(acrylamide-co-sodium methacrylate) hydrogel and its adsorption behavior[J]. Chinese Journal of Environmental Engineering, 2015, 9(11): 5243-5248. doi: 10.12030/j.cjee.20151118
Citation: Zhang Min, Li Bichan, Chen Liangbi. Fabrication of semi-IPN carboxymethyl cellulose/poly(acrylamide-co-sodium methacrylate) hydrogel and its adsorption behavior[J]. Chinese Journal of Environmental Engineering, 2015, 9(11): 5243-5248. doi: 10.12030/j.cjee.20151118

半-IPN羧甲基纤维素/聚(丙烯酰胺-共-甲基丙烯酸钠)水凝胶制备及其吸附性能

  • 基金项目:

    国家自然科学基金资助项目(51406141)

    福建省教育厅JK类项目(JK2012055)

    南平市科技局项目(N2012Z06(6))

    武夷学院基金项目(JB05194)

  • 中图分类号: TQ323.4

Fabrication of semi-IPN carboxymethyl cellulose/poly(acrylamide-co-sodium methacrylate) hydrogel and its adsorption behavior

  • Fund Project:
  • 摘要: 羧甲基纤维素(CMC)水溶液中,通过自由基共聚制备半-互穿网络(IPN)羧甲基纤维素(CMC)/聚(丙烯酰胺-共-甲基丙烯酸钠)(poly(AAm-co-NMR))水凝胶。研究CMC含量对半-IPN水凝胶溶胀率及对甲基紫的吸附性能影响。IPN-0.25、IPN-0.50和IPN-1.00对甲基紫的平衡吸附容量分别为111.0、182.3和237.6 mg/g。分别采用拟一级、拟二级和粒内扩散模型拟合实验数据,结果表明,拟二级动力学模型最符合该体系,其相关系数R2最高,说明水凝胶对甲基紫的吸附主要为化学吸附。
  • 加载中
  • [1] Li Congju, Wang Jiaona, Li Xiuyan, et al. Functionalization of electrospun magnetically separable TiO2-coated SrFe12O19 nanofibers: Strongly effective photocatalyst and magnetic separation. Journal of Materials Science, 2011, 46(7): 2058-2063
    [2] Liu Ruilai, Ye Huiyan, Xiong Xiaopeng, et al. Fabrication of TiO2/ZnO composite nanofibers by electrospinning and their photocatalytic property. Materials Chemistry and Physics, 2010, 121(3): 432-439
    [3] Khattri S. D., Singh M. K. Colour removal from dye wastewater using sugar cane dust as an adsorbent. Adsorption Science and Technology, 1999, 17(4): 269-282
    [4] Annadurai G., Juang R. S., Lee D. J. Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. Journal of Hazardous Materials, 2002, 92(3): 263-274
    [5] Panda G. C., Das S. K., Guha A. K. Jute stick powder as a potential biomass for the removal of congo red and rhodamine B from their aqueous solution. Journal of Hazardous materials, 2009, 164(1): 374-379
    [6] Ma Jinghong, Xu Yajing, Fan Bing, et al. Preparation and characterization of sodium carboxymethylcellulose/poly(N-isopropylacrylamide)/clay semi-IPN nanocomposite hydrogels. European Polymer Journal, 2007, 43(6): 2221-2228
    [7] Dragan E. S. Design and applications of interpenetrating polymer network hydrogels: A review. Chemical Engineering Journal, 2014, 243: 572-590
    [8] Jeon Y. S., Lei Jing, Kim J.-H. Dye adsorption characteristics of alginate/polyaspartate hydrogels. Journal of Industrial and Engineering Chemistry, 2008, 14(6): 726-731
    [9] Liu Yi, Wang Wenbo, Wang Aiqin. Adsorption of lead ions from aqueous solution by using carboxymethyl cellulose-g-poly(acrylic acid)/attapulgite hydrogel composites. Desalination, 2010, 259(1-3): 258-264
    [10] Shang Jing, Shao Zhengzhong, Chen Xin. Electrical behavior of a natural polyelectrolyte hydrogel: Chitosan/carboxymethylcellulose hydrogel. Biomacromolecules, 2008, 9(4): 1208-1213
    [11] Dragan E. S., Loghin D. F. A. Enhanced sorption of methylene blue from aqueous solutions by semi-IPN composite cryogels with anionically modified potato starch entrapped in PAAm matrix. Chemical Engineering Journal, 2013, 234: 211-222
    [12] Bajpai A. K., Mishra A. Preparation and characterization of tetracycline-loaded interpenetrating polymer networks of carboxymethyl cellulose and poly(acrylic acid): Water sorption and drug release study. Polymer International, 2005, 54(10): 1347-1356
    [13] Xiao Congming, Li Huaqun, Gao Yongkang. Preparation of fast pH-responsive ferric carboxymethylcellulose/poly(vinyl alcohol) double-network microparticles. Polymer International, 2009, 58(1): 112-115
    [14] Das R., Pal S. Hydroxypropyl methyl cellulose grafted with polyacrylamide: Application in controlled release of 5-amino salicylic acid. Colloids and Surfaces B: Biointerfaces, 2013, 110: 236-241
    [15] Chauhan G. S., Chauhan S., Sen U., et al. Synthesis and characterization of acrylamide and 2-hydroxyethyl methacrylate hydrogels for use in metal ion uptake studies. Desalination, 2009, 243(1-3): 95-108
    [16] Liu Haiqing, Zhen Mao, Wu Renhuang. Ionic-strength-and pH-responsive poly hydrogel nanofibers. Macromolecular Chemistry and Physics, 2007, 208(8): 874-880
    [17] Begam T., Nagpal A. K., Singhal R. Synthesis of poly(acrylamide-co-methyl methacrylate) chemically cross-linked hydrogels and their application in controlled release of model drugs. Designed Monomers and Polymers, 2006, 9(5): 477-490
    [18] Dhara D., Nisha C. K., Chatterji P. R. Super absorbent hydrogels: Interpenetrating networks of poly(acrylamide-co-acrylic acid) and poly(vinyl alcohol): Swelling behavior and structural parameters. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 1999, 36(2): 197-210
    [19] Murthy P. S. K., Mohan Y. M., Sreeramulu J., et al. Semi-IPNs of starch and poly(acrylamide-co-sodium methacrylate): Preparation, swelling and diffusion characteristics evaluation. Reactive and Functional Polymers, 2006, 66(12): 1482-1493
    [20] Ho Y.-S., McKay G. Pseudo-second order model for sorption processes. Process Biochemistry, 1999, 34(5): 451-465
    [21] Weber W. J., Morris J. C. Advances in water pollution research: Removal of biologically resistant pollutants from waste waters by adsorption//Proceedings of International Conference on Water Pollution Symposium, Vol. 2. Oxford: Pergamon Press, 1962, 231-266
    [22] Bhattacharyya R., Ray S. K. Kinetic and equilibrium modeling for adsorption of textile dyes in aqueous solutions by carboxymethyl cellulose/poly(acrylamide-co-hydroxyethyl methacrylate) semi-interpenetrating network hydrogel. Polymer Engineering and Science, 2013, 53(11): 2439-2453
  • 加载中
计量
  • 文章访问数:  1574
  • HTML全文浏览数:  1074
  • PDF下载数:  469
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-10-13
  • 刊出日期:  2015-11-18
张敏, 李碧婵, 陈良壁. 半-IPN羧甲基纤维素/聚(丙烯酰胺-共-甲基丙烯酸钠)水凝胶制备及其吸附性能[J]. 环境工程学报, 2015, 9(11): 5243-5248. doi: 10.12030/j.cjee.20151118
引用本文: 张敏, 李碧婵, 陈良壁. 半-IPN羧甲基纤维素/聚(丙烯酰胺-共-甲基丙烯酸钠)水凝胶制备及其吸附性能[J]. 环境工程学报, 2015, 9(11): 5243-5248. doi: 10.12030/j.cjee.20151118
Zhang Min, Li Bichan, Chen Liangbi. Fabrication of semi-IPN carboxymethyl cellulose/poly(acrylamide-co-sodium methacrylate) hydrogel and its adsorption behavior[J]. Chinese Journal of Environmental Engineering, 2015, 9(11): 5243-5248. doi: 10.12030/j.cjee.20151118
Citation: Zhang Min, Li Bichan, Chen Liangbi. Fabrication of semi-IPN carboxymethyl cellulose/poly(acrylamide-co-sodium methacrylate) hydrogel and its adsorption behavior[J]. Chinese Journal of Environmental Engineering, 2015, 9(11): 5243-5248. doi: 10.12030/j.cjee.20151118

半-IPN羧甲基纤维素/聚(丙烯酰胺-共-甲基丙烯酸钠)水凝胶制备及其吸附性能

  • 1. 福建省高校绿色化工技术重点实验室, 武夷学院生态与资源工程学院, 武夷山 354300
基金项目:

国家自然科学基金资助项目(51406141)

福建省教育厅JK类项目(JK2012055)

南平市科技局项目(N2012Z06(6))

武夷学院基金项目(JB05194)

摘要: 羧甲基纤维素(CMC)水溶液中,通过自由基共聚制备半-互穿网络(IPN)羧甲基纤维素(CMC)/聚(丙烯酰胺-共-甲基丙烯酸钠)(poly(AAm-co-NMR))水凝胶。研究CMC含量对半-IPN水凝胶溶胀率及对甲基紫的吸附性能影响。IPN-0.25、IPN-0.50和IPN-1.00对甲基紫的平衡吸附容量分别为111.0、182.3和237.6 mg/g。分别采用拟一级、拟二级和粒内扩散模型拟合实验数据,结果表明,拟二级动力学模型最符合该体系,其相关系数R2最高,说明水凝胶对甲基紫的吸附主要为化学吸附。

English Abstract

参考文献 (22)

返回顶部

目录

/

返回文章
返回