无机碳强化处理焦化废水EGSB反应器运行效能

董春娟, 潘青业, 孙亚全, 汪艳霞. 无机碳强化处理焦化废水EGSB反应器运行效能[J]. 环境工程学报, 2017, 11(6): 3518-3524. doi: 10.12030/j.cjee.201603186
引用本文: 董春娟, 潘青业, 孙亚全, 汪艳霞. 无机碳强化处理焦化废水EGSB反应器运行效能[J]. 环境工程学报, 2017, 11(6): 3518-3524. doi: 10.12030/j.cjee.201603186
DONG Chunjuan, PAN Qingye, SUN Yaquan, WANG Yanxia. Operational characteristic of EGSB reactor treating coking wastewater after adding inorganic carbon[J]. Chinese Journal of Environmental Engineering, 2017, 11(6): 3518-3524. doi: 10.12030/j.cjee.201603186
Citation: DONG Chunjuan, PAN Qingye, SUN Yaquan, WANG Yanxia. Operational characteristic of EGSB reactor treating coking wastewater after adding inorganic carbon[J]. Chinese Journal of Environmental Engineering, 2017, 11(6): 3518-3524. doi: 10.12030/j.cjee.201603186

无机碳强化处理焦化废水EGSB反应器运行效能

  • 基金项目:

    山西省2015科技攻关项目(20150313002-1)

  • 中图分类号: X703

Operational characteristic of EGSB reactor treating coking wastewater after adding inorganic carbon

  • Fund Project:
  • 摘要: 为实现处理焦化废水的颗粒污泥的快速培养,进而高效处理焦化废水,在22~27 ℃环境温度下,平行运行2个EGSB反应器,用焦化废水驯化处理啤酒废水颗粒污泥,对微氧运行(与厌氧对比),有机营养物添加(厌氧、微氧运行)、无机碳营养添加(厌氧、微氧运行)3种情况时的污染物质(COD)去除效果进行实验研究。研究结果表明:与厌氧相比,微氧运行能够明显强化焦化废水中毒性污染物质的去除。在焦化废水驯化初期,多次水质冲击(1 500 mg·L-1COD, 220 mg·L-1氨氮→2 000 mg·L-1COD,70 mg·L-1氨氮→700 mg·L-1COD,104~220 mg·L-1氨氮),微氧运行时COD平均去除率为24.8%(厌氧运行时仅为5.16%)。微氧运行虽然保证了污泥床的有效膨胀,但COD去除率的提高仍然有限。有机营养物的添加并没有使得COD去除率大幅提高,厌氧时为22.8%,微氧时为37.5%。无机碳营养(碳酸氢钠)的添加能够大幅提高焦化废水中COD去除率,厌氧时提高到53.8%;微氧时提高到75.4%,增幅分别达到31.0%和37.4%。微氧运行条件与无机碳营养的耦合作用能强化焦化废水中COD的去除,快速驯化培养处理焦化废水颗粒污泥。通过给处理焦化废水微氧EGSB反应器内添加碳酸氢钠,40 d就能完成高活性颗粒污泥的培养,高效处理焦化废水中各种污染物质。进水COD、酚类、氰化物和硫氢化物分别为54.8-1 927 mg·L-1,10.1-154.3 mg·L-1,0.9-57.8 mg·L-1和66.7-340.4 mg·L-1、进水流量1.2 L·h-1、HRT10 h 时,COD去除率达到78%~86%,酚类、氰化物、硫氢化物的平均去除率分别高达98.9%、93.1%和97.5%。
  • 加载中
  • [1] GU Qiyuan, SUN Tichang, WU Gen, et al.Influence of carrier filling ratio on the performance of moving bed biofilm reactor in treating coking wastewater[J].Bioresource Technology, 2014,166:72-78
    [2] WANG Feng, HU Yiru, GUO Chen, et al.Enhanced phenol degradation in coking wastewater by immobilized laccase on magnetic mesoporous silica nanoparticles in a magnetically stabilized fluidized bed[J].Bioresource Technology, 2012,110:120-124
    [3] LI Bing, SUN YingLan, LI Yuying.Pretreatment of coking wastewater using anaerobic sequencing batch reactor (ASBR)[J].Journal of Zhejiang University SCIENCE,2005,6B (11):1115-1123
    [4] 陆洪宇,孙亚全,董春娟,等.焦化废水中COD、挥发酚和硫氰化物同步高效去除[J].环境工程学报, 2014,8(7):2848-2852
    [5] 董春娟, 王海会,陈素云,等.EGSB反应器处理焦化废水的启动试验研究[J].中国给水排水,2011,27(9):91-94
    [6] LI Huosheng, ZHOU Shaoqi, MA Weihao, et al.Fast start-up of ANAMMOX reactor:Operational strategy and some characteristics as indicators of reactor performance[J].Desalination,2012, 286(2):436-441
    [7] MONTALVO S, GUERRERO L, ROBLES M, et al.Start-up and performance of UASB reactors using zeolite for improvement of nitrate removal process[J].Ecological Engineering, 2014,70(9):437-445
    [8] GOBERNA M, GADERMAIER M, FRANKE-WHITTLE I H, et al.Start-up strategies in manure-fed biogas reactors:Process parameters and methanogenic communities[J].Biomass and Bioenergy, 2015, 75(5):46-56
    [9] JEONG Y S, CHUNG J S.Simultaneous removal of COD, thiocyanate, cyanide and nitrogen from coal process wastewater using fluidized biofilm process[J].Process Biochemistry,2006, 41:1141-1147
    [10] KIM Y M, PARK D, LEE D S, er al.Sudden failure of biological nitrogen and carbon removal in the full-scale predenitrification process treating cokes wastewater[J].Bioresource Technology,2009, 100:4340-4347
    [11] CHAKRABORTY S, VEERAMANI H.Effect of HRT and recycle ratio on removal of cyanide, phenol,thiocyanate and ammonia n anaerobic-anoxic-aerobic continuous system[J].Process Biochemistry,2006,41:96-105
    [12] SAHARIAH B P, CHAKRABORTY S W.Kinetic analysis of phenol, thiocyanate and ammonia-nitrogen removals in an anaerobic-anoxic-aerobic moving bed bioreactor system[J].Journal of Hazardous Materials,2011, 190:260-267
    [13] XU P, HAN H, ZHUANG H, et al.Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of heterogeneous Fenton oxidation and biological process[J].Bioresource Technology,2015,182:389-392
    [14] 景雪.利用共基质代谢提高活性污泥法处理焦化废水COD的效率[J].广州环境科学,2009,24(3):11-14
    [15] 国家环保总局.水和废水监测分析方法[M].北京:中国环境科学出版社,2004
    [16] American Water Works Assocoation.Standard Methods for the Examination of Water and Wastewater[M].22 nd ed.Washington DC:American Public Health Association, 1999:4500-CN-M
    [17] KIM Y M, PARK D, LEE D S, er al.Inhibitory effects of toxic compounds on nitrification process for cokes wastewater treatment[J].Journal of Hazardous Materials,2008,152:915-921
    [18] VÁZQUEZ I, RODRÍGUEZ J, MARADIEN E,et al.Simultaneous removal of phenol, ammonium and thiocyanate from coke wastewater by aerobic biodegradation[J].Journal of Hazardous Materials,2006,137:1773-1780
  • 加载中
计量
  • 文章访问数:  1668
  • HTML全文浏览数:  1394
  • PDF下载数:  586
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-04-27
  • 刊出日期:  2017-06-23
董春娟, 潘青业, 孙亚全, 汪艳霞. 无机碳强化处理焦化废水EGSB反应器运行效能[J]. 环境工程学报, 2017, 11(6): 3518-3524. doi: 10.12030/j.cjee.201603186
引用本文: 董春娟, 潘青业, 孙亚全, 汪艳霞. 无机碳强化处理焦化废水EGSB反应器运行效能[J]. 环境工程学报, 2017, 11(6): 3518-3524. doi: 10.12030/j.cjee.201603186
DONG Chunjuan, PAN Qingye, SUN Yaquan, WANG Yanxia. Operational characteristic of EGSB reactor treating coking wastewater after adding inorganic carbon[J]. Chinese Journal of Environmental Engineering, 2017, 11(6): 3518-3524. doi: 10.12030/j.cjee.201603186
Citation: DONG Chunjuan, PAN Qingye, SUN Yaquan, WANG Yanxia. Operational characteristic of EGSB reactor treating coking wastewater after adding inorganic carbon[J]. Chinese Journal of Environmental Engineering, 2017, 11(6): 3518-3524. doi: 10.12030/j.cjee.201603186

无机碳强化处理焦化废水EGSB反应器运行效能

  • 1. 太原学院环境工程系, 太原 030032
  • 2. 太原理工大成工程有限公司, 太原 030024
  • 3. 中国市政工程中南设计研究总院有限公司, 武汉 430010
基金项目:

山西省2015科技攻关项目(20150313002-1)

摘要: 为实现处理焦化废水的颗粒污泥的快速培养,进而高效处理焦化废水,在22~27 ℃环境温度下,平行运行2个EGSB反应器,用焦化废水驯化处理啤酒废水颗粒污泥,对微氧运行(与厌氧对比),有机营养物添加(厌氧、微氧运行)、无机碳营养添加(厌氧、微氧运行)3种情况时的污染物质(COD)去除效果进行实验研究。研究结果表明:与厌氧相比,微氧运行能够明显强化焦化废水中毒性污染物质的去除。在焦化废水驯化初期,多次水质冲击(1 500 mg·L-1COD, 220 mg·L-1氨氮→2 000 mg·L-1COD,70 mg·L-1氨氮→700 mg·L-1COD,104~220 mg·L-1氨氮),微氧运行时COD平均去除率为24.8%(厌氧运行时仅为5.16%)。微氧运行虽然保证了污泥床的有效膨胀,但COD去除率的提高仍然有限。有机营养物的添加并没有使得COD去除率大幅提高,厌氧时为22.8%,微氧时为37.5%。无机碳营养(碳酸氢钠)的添加能够大幅提高焦化废水中COD去除率,厌氧时提高到53.8%;微氧时提高到75.4%,增幅分别达到31.0%和37.4%。微氧运行条件与无机碳营养的耦合作用能强化焦化废水中COD的去除,快速驯化培养处理焦化废水颗粒污泥。通过给处理焦化废水微氧EGSB反应器内添加碳酸氢钠,40 d就能完成高活性颗粒污泥的培养,高效处理焦化废水中各种污染物质。进水COD、酚类、氰化物和硫氢化物分别为54.8-1 927 mg·L-1,10.1-154.3 mg·L-1,0.9-57.8 mg·L-1和66.7-340.4 mg·L-1、进水流量1.2 L·h-1、HRT10 h 时,COD去除率达到78%~86%,酚类、氰化物、硫氢化物的平均去除率分别高达98.9%、93.1%和97.5%。

English Abstract

参考文献 (18)

返回顶部

目录

/

返回文章
返回