微生物燃料电池藻阴极性能比较及膜污染分析

郑伟, 唐超, 黄满红, 陈东辉, 陈亮, 孙哲, 林立. 微生物燃料电池藻阴极性能比较及膜污染分析[J]. 环境工程学报, 2016, 10(3): 1211-1216. doi: 10.12030/j.cjee.20160333
引用本文: 郑伟, 唐超, 黄满红, 陈东辉, 陈亮, 孙哲, 林立. 微生物燃料电池藻阴极性能比较及膜污染分析[J]. 环境工程学报, 2016, 10(3): 1211-1216. doi: 10.12030/j.cjee.20160333
Zheng Wei, Tang Chao, Huang Manhong, Chen Donghui, Chen Liang, Sun Zhe, Lin Li. Comparison of algal cathodes in a microbial fuel cell and analysis to fouling of membrane[J]. Chinese Journal of Environmental Engineering, 2016, 10(3): 1211-1216. doi: 10.12030/j.cjee.20160333
Citation: Zheng Wei, Tang Chao, Huang Manhong, Chen Donghui, Chen Liang, Sun Zhe, Lin Li. Comparison of algal cathodes in a microbial fuel cell and analysis to fouling of membrane[J]. Chinese Journal of Environmental Engineering, 2016, 10(3): 1211-1216. doi: 10.12030/j.cjee.20160333

微生物燃料电池藻阴极性能比较及膜污染分析

  • 基金项目:

    国家自然科学基金资助项目(21477018)

  • 中图分类号: X382

Comparison of algal cathodes in a microbial fuel cell and analysis to fouling of membrane

  • Fund Project:
  • 摘要: 为考察藻种类及阴极材料对藻阴极型微生物燃料电池性能的影响,以微藻及水绵为阴极生物,分别采用碳毡,碳纸,载铂碳纸为阴极材料,构建了微生物燃料电池。结果显示,以碳毡作为阴极材料时,2种藻阴极微生物燃料电池最大功率密度均高于以碳纸为阴极材料时相应的功率密度。采用载铂碳纸为阴极材料、天然湖水为阴极液,微生物燃料电池最大功率密度分别达到165.1 mW/m2(微藻阴极)和119.9 mW/m2(水绵阴极)。电化学测试表明,藻类生长形态影响了阴极的电化学特征,进而影响到了微生物燃料电池的性能。藻阴极MFC长期运行时,膜污染是藻阴极微生物燃料电池功率密度下降的关键因素之一。SEM-EDS分析显示,膜两侧污染主要原因分别是微生物生长和磷酸盐晶体沉积。
  • 加载中
  • [1] Logan B. E., Rabaey K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science, 2012, 337(6095):686-690
    [2] Werner C. M., Logan B. E., Saikaly P. E., et al. Wastewater treatment, energy recovery and desalination using a forward osmosis membrane in an air-cathode microbial osmotic fuel cell. Journal of Membrane Science, 2013, 428:116-122
    [3] Wei Bin, Tokash J. C., Zhang Fang, et al. Electrochemical analysis of separators used in single-chamber, air-cathode microbial fuel cells. Electrochimica Acta, 2013, 89:45-51
    [4] Zhang Yaping, Sun Jian, Hu Yongyou, et al. Carbon nanotube-coated stainless steel mesh for enhanced oxygen reduction in biocathode microbial fuel cells. Journal of Power Sources, 2013, 239:169-174
    [5] Martin E., Tartakovsky B., Savadogo O. Cathode materials evaluation in microbial fuel cells:A comparison of carbon, Mn2O3, Fe2O3 and platinum materials. Electrochimica Acta, 2011, 58:58-66
    [6] Huang Liping, Regan J. M., Quan Xie. Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresource Technology, 2011, 102(1):316-323
    [7] Cai Peijie, Xiao Xiang, He Yanrong, et al. Reactive oxygen species (ROS) generated by cyanobacteria act as an electron acceptor in the biocathode of a bioelectrochemical system. Biosensors and Bioelectronics, 2013, 39(1):306-310
    [8] Powell E. E., Mapiour M. L., Evitts R. W., et al. Growth kinetics of Chlorella vulgaris and its use as a cathodic half cell. Bioresource Technology, 2009, 100(1):269-274
    [9] Gajda I., Greenman J., Melhuish C., et al. Photo-synthetic cathodes for microbial fuel cells. International Journal of Hydrogen Energy, 2013, 38(26):11559-11564
    [10] Walter X. A., Greenman J., Ieropoulos I. A. Oxygenic phototrophic biofilms for improved cathode performance in microbial fuel cells. Algal Research, 2013, 2(3):183-187
    [11] Juang D. F., Lee C. H., Hsueh S. C. Comparison of electrogenic capabilities of microbial fuel cell with different light power on algae grown cathode. Bioresource Technology, 2012, 123:23-29
    [12] Wu Yicheng, Wang Zejie, Zheng Yue, et al. Light intensity affects the performance of photo microbial fuel cells with Desmodesmus sp. A8 as cathodic microorganism. Applied Energy, 2014, 116:86-90
    [13] Wang Xin, Feng Yujie, Liu Jia, et al. Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs). Biosensors and Bioelectronics, 2010, 25(12):2639-2643
    [14] Lee Yichao, Chang Shuiping. The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresource Technology, 2011, 102(9):5297-5304
    [15] Gupta V. K., Rastogi A. Biosorption of lead from aqueous solutions by green algae Spirogyra species:Kinetics and equilibrium studies. Journal of Hazardous Materials, 2008, 152(1):407-414
  • 加载中
计量
  • 文章访问数:  2062
  • HTML全文浏览数:  1671
  • PDF下载数:  548
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-07-10
  • 刊出日期:  2016-03-18
郑伟, 唐超, 黄满红, 陈东辉, 陈亮, 孙哲, 林立. 微生物燃料电池藻阴极性能比较及膜污染分析[J]. 环境工程学报, 2016, 10(3): 1211-1216. doi: 10.12030/j.cjee.20160333
引用本文: 郑伟, 唐超, 黄满红, 陈东辉, 陈亮, 孙哲, 林立. 微生物燃料电池藻阴极性能比较及膜污染分析[J]. 环境工程学报, 2016, 10(3): 1211-1216. doi: 10.12030/j.cjee.20160333
Zheng Wei, Tang Chao, Huang Manhong, Chen Donghui, Chen Liang, Sun Zhe, Lin Li. Comparison of algal cathodes in a microbial fuel cell and analysis to fouling of membrane[J]. Chinese Journal of Environmental Engineering, 2016, 10(3): 1211-1216. doi: 10.12030/j.cjee.20160333
Citation: Zheng Wei, Tang Chao, Huang Manhong, Chen Donghui, Chen Liang, Sun Zhe, Lin Li. Comparison of algal cathodes in a microbial fuel cell and analysis to fouling of membrane[J]. Chinese Journal of Environmental Engineering, 2016, 10(3): 1211-1216. doi: 10.12030/j.cjee.20160333

微生物燃料电池藻阴极性能比较及膜污染分析

  • 1. 东华大学环境科学与工程学院, 国家环境保护纺织污染防治工程技术中心, 上海 201620
基金项目:

国家自然科学基金资助项目(21477018)

摘要: 为考察藻种类及阴极材料对藻阴极型微生物燃料电池性能的影响,以微藻及水绵为阴极生物,分别采用碳毡,碳纸,载铂碳纸为阴极材料,构建了微生物燃料电池。结果显示,以碳毡作为阴极材料时,2种藻阴极微生物燃料电池最大功率密度均高于以碳纸为阴极材料时相应的功率密度。采用载铂碳纸为阴极材料、天然湖水为阴极液,微生物燃料电池最大功率密度分别达到165.1 mW/m2(微藻阴极)和119.9 mW/m2(水绵阴极)。电化学测试表明,藻类生长形态影响了阴极的电化学特征,进而影响到了微生物燃料电池的性能。藻阴极MFC长期运行时,膜污染是藻阴极微生物燃料电池功率密度下降的关键因素之一。SEM-EDS分析显示,膜两侧污染主要原因分别是微生物生长和磷酸盐晶体沉积。

English Abstract

参考文献 (15)

返回顶部

目录

/

返回文章
返回