多孔陶瓷滤球对杭州西湖沉积物5种形态磷的吸附性能

刘子森, 张义, 张垚磊, 贺锋, 刘碧云, 曾磊, 吴振斌. 多孔陶瓷滤球对杭州西湖沉积物5种形态磷的吸附性能[J]. 环境工程学报, 2017, 11(1): 151-158. doi: 10.12030/j.cjee.201605039
引用本文: 刘子森, 张义, 张垚磊, 贺锋, 刘碧云, 曾磊, 吴振斌. 多孔陶瓷滤球对杭州西湖沉积物5种形态磷的吸附性能[J]. 环境工程学报, 2017, 11(1): 151-158. doi: 10.12030/j.cjee.201605039
LIU Zisen, ZHANG Yi, ZHANG Yaolei, HE Feng, LIU Biyun, ZENG Lei, WU Zhenbin. Adsorption performance of porous ceramic filter material (PCFM) on sediments five phosphorus fractions in West Lake, Hangzhou, China[J]. Chinese Journal of Environmental Engineering, 2017, 11(1): 151-158. doi: 10.12030/j.cjee.201605039
Citation: LIU Zisen, ZHANG Yi, ZHANG Yaolei, HE Feng, LIU Biyun, ZENG Lei, WU Zhenbin. Adsorption performance of porous ceramic filter material (PCFM) on sediments five phosphorus fractions in West Lake, Hangzhou, China[J]. Chinese Journal of Environmental Engineering, 2017, 11(1): 151-158. doi: 10.12030/j.cjee.201605039

多孔陶瓷滤球对杭州西湖沉积物5种形态磷的吸附性能

  • 基金项目:

    国家水体污染控制与治理科技重大专项(2012ZX07101007-005)

    国家科技支撑计划项目(2012BAJ21B03-04)

    湖北省自然科学基金青年基金项目(2014CFB282)

  • 中图分类号: X524;X703.1

Adsorption performance of porous ceramic filter material (PCFM) on sediments five phosphorus fractions in West Lake, Hangzhou, China

  • Fund Project:
  • 摘要: 以新型赤泥基多孔陶瓷滤球(porous ceramic filter material,PCFM)颗粒为吸附剂,采用动态和静态吸附实验相结合的实验方法研究了PCFM颗粒对沉积物磷的吸附性能。动态吸附实验结果表明,影响PCFM颗粒除磷效果的主要因素有投加量、反应时间、上覆水体pH值和环境温度,最佳吸附反应条件为PCFM投加量8 g,反应时间12 h,上覆水体pH=12,环境温度为50℃。静态吸附实验结果表明,随着反应时间的延长,PCFM对沉积物五种形态磷吸附在12 d左右接近或达到了吸附平衡,此时TP、OP、IP、Fe/Al-P和Ca-P的去除量分别为245.89、69.86、155.25、195.22和-49.01 mg·kg-1。可见PCFM对沉积物磷的吸附性能较好,可进一步应用于富营养化湖泊沉积物磷控制。
  • 加载中
  • [1] WU Dan, HUA Zulin. The effect of vegetation on sediment resuspension and phosphorus release under hydrodynamic disturbance in shallow lakes[J]. Ecological Engineering, 2014, 69:55-62
    [2] ZHANG Yi, XIA Shibin, HE Feng, et al. Phosphate removal of acid wastewater from high-phosphate hematite pickling process by in-situ self-formed dynamic membrane technology[J]. Desalination and Water Treatment, 2012, 37(1/2/3):77-83
    [3] TANG Xianqiang, WU Min, DAI Xichang, et al. Phosphorus storage dynamics and adsorption characteristics for sediment from a drinking water source reservoir and its relation with sediment compositions[J]. Ecological Engineering, 2014, 64:276-284
    [4] 徐进, 徐力刚, 龚然, 等. 鄱阳湖沉积物中磷吸附释放特性及影响因素研究[J]. 生态环境学报, 2014, 23(4):630-635
    [5] LIU Cheng, SHAO Shiguang, SHEN Qiushi, et al. Effects of riverine suspended particulate matter on the post-dredging increase in internal phosphorus loading across the sediment-water interface[J]. Environmental Pollution, 2016, 211:165-172
    [6] 寇丹丹, 张义, 黄发明, 等. 水体沉积物磷控制技术[J]. 环境科学与技术, 2012, 35(10):81-85
    [7] AHN J S, CHON C M, MOON H S, et al. Arsenic removal using steel manufacturing byproducts as permeable reactive materials in mine tailing containment systems[J]. Water Research, 2003, 37(10):2478-2488
    [8] HORPPILA J, NURMINEN L. Effects of different macrophyte growth forms on sediment and P resuspension in a shallow lake[J]. Hydrobiologia, 2005, 545(1):167-175
    [9] BERG U, NEUMANN T, DONNERT D, et al. Sediment capping in eutrophic lakes-efficiency of undisturbed calcite barriers to immobilize phosphorus[J]. Applied Geochemistry, 2004, 19(11):1759-1771
    [10] U S EPA. Contaminated sediment remediation guidance for hazardous waste sites[R]. Office of Solid Waste and Emergency Response, 2005
    [11] LIN Jianwei, ZHAN Yanhui, ZHU Zhiliang. Evaluation of sediment capping with active barrier systems (ABS) using calcite/zeolite mixtures to simultaneously manage phosphorus and ammonium release[J]. Science of the Total Environment, 2011, 409(3):638-646
    [12] MURPHY T P, LAWSON A, KUMAGAI M, et al. Review of emerging issues in sediment treatment[J]. Aquatic Ecosystem Health and Management, 1988, 2(4):419-434
    [13] SANDHYA Babel, TONNI Agustiono Kurniawan. Low-cost adsorbents for heavy metals uptake from contaminated water:A review[J]. Journal of Hazardous Materials, 2003, 97(1/2/3):219-243
    [14] YE Jie, CONG Xiangna, ZHANG Panyue, et al. Operational parameter impact and back propagation artificial neural network modeling for phosphate adsorption onto acid-activated neutralized red mud[J]. Journal of Molecular Liquids, 2016, 216:35-41
    [15] ZHANG Shengyu, YING Lü, SU Xiaosi, et al. Removal of fluoride ion from groundwater by adsorption on lanthanum and aluminum loaded clay adsorbent[J]. Environmental Earth Sciences, 2016, 75(5):1-9
    [16] HUANG Weiwei, WANG Shaobin, ZHU Zhonghua, et al. Phosphate removal from wastewater using red mud[J]. Journal of Hazardous Materials, 2008, 158(1):35-42
    [17] 王春丽, 吴俊奇, 宋永会, 等.活化赤泥颗粒吸附除磷的效能与机制研究[J]. 环境工程技术学报, 2015, 5(2):143-148
    [18] RUBAN V, LOPEZ-SANCHEZ J F, Pardo P, et al. Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments:A synthesise of recent works[J]. Fresenius' Journal of Analytical Chemistry, 2001, 307:224-228
    [19] 国家环境保护总局. 水和废水监测分析方法[M].4版. 北京:中国环境科学出版社. 2002:243-246
    [20] LIU Yong, LIN Chuxia, WU Yonggui. Characterization of red mud derived from a combined Bayer Process and bauxite calcination method[J]. Journal of Hazardous Materials, 2007, 146(1):255-261
    [21] YE Jie, CONG Xiangna, ZHANG Panyue, et al. Interaction between phosphate and acid-activated neutralized red mud during adsorption process[J]. Applied Surface Science, 2015, 356:128-134
    [22] DITTRICH M, GABRIEL O, CHRISTIAN R, et al. Lake restoration by hypolimnetic Ca(OH)2 treatment:Impact on phosphorus sedimentation and release from sediment[J]. Science of the Total Environment, 2011, 409(8):1504-1515
    [23] Solim S U, Wanganeo A. Factors influencing release of phosphorus from sediments in a high productive polymictic lake system[J]. Water Science and Technology, 2009, 60(4):1013-1023
    [24] ZHANG Yi, HE Feng, XIA Shibin, et al. Studies on the treatment efficiency of sediment phosphorus with a combined technology of PCFM and submerged macrophytes[J]. Environmental Pollution Journal, 2015, 206:705-711
    [25] 袁东海, 张孟群, 高士详, 等. 几种粘土矿物和粘粒土壤吸附净化磷素的性能和机理[J]. 环境化学, 2005, 24(1):7-11
  • 加载中
计量
  • 文章访问数:  2419
  • HTML全文浏览数:  1880
  • PDF下载数:  486
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-09-14
  • 刊出日期:  2017-01-05
刘子森, 张义, 张垚磊, 贺锋, 刘碧云, 曾磊, 吴振斌. 多孔陶瓷滤球对杭州西湖沉积物5种形态磷的吸附性能[J]. 环境工程学报, 2017, 11(1): 151-158. doi: 10.12030/j.cjee.201605039
引用本文: 刘子森, 张义, 张垚磊, 贺锋, 刘碧云, 曾磊, 吴振斌. 多孔陶瓷滤球对杭州西湖沉积物5种形态磷的吸附性能[J]. 环境工程学报, 2017, 11(1): 151-158. doi: 10.12030/j.cjee.201605039
LIU Zisen, ZHANG Yi, ZHANG Yaolei, HE Feng, LIU Biyun, ZENG Lei, WU Zhenbin. Adsorption performance of porous ceramic filter material (PCFM) on sediments five phosphorus fractions in West Lake, Hangzhou, China[J]. Chinese Journal of Environmental Engineering, 2017, 11(1): 151-158. doi: 10.12030/j.cjee.201605039
Citation: LIU Zisen, ZHANG Yi, ZHANG Yaolei, HE Feng, LIU Biyun, ZENG Lei, WU Zhenbin. Adsorption performance of porous ceramic filter material (PCFM) on sediments five phosphorus fractions in West Lake, Hangzhou, China[J]. Chinese Journal of Environmental Engineering, 2017, 11(1): 151-158. doi: 10.12030/j.cjee.201605039

多孔陶瓷滤球对杭州西湖沉积物5种形态磷的吸附性能

  • 1.  中国科学院水生生物研究所, 淡水生态和生物技术国家重点实验室, 武汉, 430072
  • 2.  中国科学院大学, 北京, 100049
  • 3.  武汉理工大学资源与环境工程学院, 武汉, 430070
基金项目:

国家水体污染控制与治理科技重大专项(2012ZX07101007-005)

国家科技支撑计划项目(2012BAJ21B03-04)

湖北省自然科学基金青年基金项目(2014CFB282)

摘要: 以新型赤泥基多孔陶瓷滤球(porous ceramic filter material,PCFM)颗粒为吸附剂,采用动态和静态吸附实验相结合的实验方法研究了PCFM颗粒对沉积物磷的吸附性能。动态吸附实验结果表明,影响PCFM颗粒除磷效果的主要因素有投加量、反应时间、上覆水体pH值和环境温度,最佳吸附反应条件为PCFM投加量8 g,反应时间12 h,上覆水体pH=12,环境温度为50℃。静态吸附实验结果表明,随着反应时间的延长,PCFM对沉积物五种形态磷吸附在12 d左右接近或达到了吸附平衡,此时TP、OP、IP、Fe/Al-P和Ca-P的去除量分别为245.89、69.86、155.25、195.22和-49.01 mg·kg-1。可见PCFM对沉积物磷的吸附性能较好,可进一步应用于富营养化湖泊沉积物磷控制。

English Abstract

参考文献 (25)

返回顶部

目录

/

返回文章
返回