-
催化燃烧法是目前处理挥发性有机物(VOCs)常用的有效方法之一[1-2]。它通过降低反应所需活化能,缩短反应时间,提高转化率,降低反应所需温度,同时较低的反应温度也使得气体在转化过程中难以生成二次污染物,对环境更为友好,因此,针对催化燃烧的实际应用的研究具有重要意义。工业上常用的催化剂有2种:一种是颗粒状催化剂;一种是整体式催化剂。颗粒状催化剂在工业上应用时总会发生床层堵塞、颗粒破裂等问题,并且传热效果、热稳定性等性能都比较差,学者们从这几方面着手开展工作,研发出了稳定性好、耐压耐磨、传热效果好、方便装填的整体式催化剂[3-4]。近些年,由于整体式催化剂具有良好的特性,因此,在汽车尾气净化等工业领域有了较为广泛的应用,在环保领域有着举足轻重的地位[3]。
在催化燃烧过程中,传质、传热、流动机理相当复杂,因此,这些问题大多数都没有得到实质性的解决[5]。电脑的发展以及模拟软件的开发为这一难题提供了另一条思路——通过人为控制条件对反应进行一系列模拟,从而观察反应的动态规律。目前,使用最多的模拟软件是Fluent,它具有多样的物理模型,可以适用于环保、能源、航空航天等多个领域;同时它还具备先进的求解器和求解方法,通过条件的合理定义,可以得到准确的仿真结果;其强大的后处理功能更能使结果可视化、简单直观地呈现出来。李欣婷[6]对微型圆管燃烧器内二甲醚的催化燃烧进行了数值模拟,进一步验证了催化剂对二甲醚的吸附能力大于氧气,适当增加氧气含量,有利于催化反应正向进行;曾文[7]对在均质压燃HCCI发动机中的催化燃烧进行了模拟,创建了单维和多维模型,并详细分析了催化燃烧对HCCI发动机缸内温度场及CO、HC、NO浓度场的影响;王娟等[8-9]对在整体式催化剂中甲苯的蓄热燃烧和催化燃烧进行了数值模拟,从催化剂孔道水平考察了2种方式的反应特征和适用范围。
目前,由于缺少挥发性有机物在催化剂表面的反应机理,并且绝大部分模拟仅在催化剂单孔道层面进行,因而,缺少针对整体式催化剂催化有机物的研究工作。本研究以甲苯为VOCs的代表物,采用一步反应机理,着眼于整个催化燃烧系统中甲苯转化率、速度变化、当量比和温度分布等因素的研究;并利用多孔介质模型模拟催化燃烧,进一步探索整体式催化反应系统内甲苯催化燃烧的规律分布,再使用Fluent软件进行数值模拟,进而对其燃烧特性进行探究,以便为实际应用提供参考。
基于Fluent的整体式催化反应系统降解甲苯的数值模拟
Numerical simulation of catalytic combustion of toluene in monolithic catalytic reaction system based on Fluent
-
摘要: 为得到甲苯在整体式催化系统中的燃烧规律,利用Fluent 18.1对整体式催化反应系统中甲苯-空气在铂(Pt)上的燃烧特性进行了数值模拟。通过假设多孔介质内气固间局部能够达到热平衡,建立了三维的多孔介质催化燃烧模型。经验证,该模型能够很好地反映甲苯在整个系统中的燃烧特性。通过对整个反应系统中温度场、浓度场和速度场的工况探究和通过分段控制燃烧反应发现:贫燃条件有利于催化燃烧,富燃条件有利于引发热力燃烧;当量比小于1,入口流速小于2 m·s−1时,有利于催化燃烧,催化转化率在96%以上;当量比较高,入口流速较大时,有利于引发热力燃烧。以上研究结果为该技术的实际应用提供了参考。Abstract: In order to obtain the combustion law of toluene in the monolithic catalytic system, numerical simulation of the combustion characteristics of toluene-air on platinum (Pt) in a monolithic catalytic reaction system was carried out using Fluent 18.1. Based on the assumption of local thermal equilibrium between gas and solid in porous media, a three-dimensional catalytic combustion model of porous media was established. Experiments showed that the model could well reflect the combustion characteristics of toluene in the whole system. Through the investigation of temperature field, concentration field and velocity field in the whole reaction system and segmental controlling combustion reaction, it was found that the lean combustion condition was favorable for catalytic combustion, and the rich combustion condition was favorable for inducing thermal combustion. At the equivalent ratio less than 1and the inlet flow rate less than 2 m·s−1, which was beneficial to catalytic combustion, the catalytic conversion rate was above 96%. When the equivalent was relatively high and the inlet flow rate was large, it was favorable for causing thermal combustion. This result provided a reference for the practical application of this technology.
-
Key words:
- toluene /
- catalytic oxidation /
- numerical simulation /
- reactor /
- porous medium
-
表 1 网格无关性验证数据对比
Table 1. Comparison of grid-independent validation data
加密情况 标准差 面积加权均匀性指数 不加密 0.273 0.882 加密1次 0.233 0.909 加密2次 0.233 0.909 -
[1] 户英杰, 王志强, 程星星, 等. 燃烧处理挥发性有机污染物的研究进展[J]. 化工进展, 2018, 37(1): 319-329. [2] 汪智伟, 陈明功, 王旭浩, 等. 挥发性有机物处理技术研究现状与进展[J]. 现代化工, 2018, 38(7): 79-83. [3] 崔龙, 韩建, 于力娜, 等. 整体式Cu-ZSM-5蜂窝催化剂开发研究[J]. 汽车工艺与材料, 2019(1): 46-50. [4] 李涛. VOCs催化燃烧催化剂的制备及反应系统研究[D]. 上海: 华东理工大学, 2015. [5] 杨一鸣. 选择性催化还原法(SCR)反应器主体形式及内部结构的设计与优化[D]. 北京: 北京工业大学, 2017. [6] 李欣婷. 微型圆管燃烧器内二甲醚催化燃烧的数值模拟[D]. 杭州: 浙江大学, 2018. [7] 曾文. 催化燃烧的数值模拟及其在均质压燃(HCCI)发动机中应用的基础研究[D]. 大连: 大连理工大学, 2006. [8] 王娟. 整体式催化剂中甲苯燃烧反应的数值模拟及其结构优化[D]. 广州: 华南理工大学, 2011. [9] 王娟, 赵建国, 黄碧纯, 等. 整体式催化剂中甲苯蓄热催化燃烧过程的数值模拟[C]//中国化学会. 第十五届全国催化学术会议论文集. 广州, 2010: 1. [10] 王恩宇, 吴晋湘, 刘联胜, 等. 基于FLUENT对惰性多孔介质中湍流预混燃烧的模拟[J]. 河北工业大学学报, 2007, 36(2): 94-99. doi: 10.3969/j.issn.1007-2373.2007.02.019 [11] YANG Y M, LI J, HE H. Research and proposal on selective catalytic reduction reactor optimization for industrial boiler[J]. Journal of the Air & Waste Management Association, 2018, 68(7): 737-754. [12] 何金桥, 赵华庚, 曾丹, 等. 基于多孔介质模型的低质燃气燃烧排放特性数值模拟[J]. 长沙理工大学学报(自然科学版), 2017, 14(2): 80-84. doi: 10.3969/j.issn.1672-9331.2017.02.013 [13] VEREIN D I. VDI-Wärmeatlas[M]. 8th Edition. Düsseldorf: VDI-Verlag, 1997. [14] FU X Y. Modeling of asubmerged flame porous burner/radiant heater[D]. West Lafayette, IN, USA: Purdue University, 1997. [15] 吕兆华. 泡沫型多孔介质中非达西流动特性的研究[J]. 工程力学, 1995, 15(2): 57-64. [16] 罗孟飞, 袁贤鑫, 朱波. 甲苯、丙酮在Pt/NM催化剂上深度氧化反应动力学研究[J]. 杭州大学学报(自然科学版), 1993, 20(3): 333-337. doi: 10.3321/j.issn:1008-9497.1993.03.014 [17] 杨亚晶, 谢伟, 魏衍举. Mg-O2和Mg-CO2预混气燃烧特性及热声振荡的数值模拟研究[J]. 推进技术, 2019, 40(2): 1-13. [18] CHI H, JIE C, XIN Z, et al. Recent advances in the catalytic oxidation of volatile organic compounds: A review based on pollutant sorts and sources[J]. Chemical Reviews, 2019, 119(7): 4471-4568. doi: 10.1021/acs.chemrev.8b00408 [19] HOSSEINI M, BARAKAT T, COUSIN R, et al. Catalytic performance of core-shell and alloy Pd-Au nanoparticles for total oxidation of VOC: The effect of metal deposition[J]. Applied Catalysis B: Evironmental, 2012, 111-112: 218-224. doi: 10.1016/j.apcatb.2011.10.002 [20] 罗孟飞, 袁贤鑫, 陈敏. Pt/NM、Pd/NM催化剂上甲苯深度氧化反应动力学[J]. 应用化学, 1994, 6(11): 70-72. [21] 李欣婷, 邓尘, 杨卫娟, 等. 微型填充床燃烧器中二甲醚的铂催化燃烧数值模拟[J]. 热力发电, 2018, 47(8): 50-54. [22] WANG S X, LI L H, XIA Y F, et al. Effect of a catalytic segment on flame stability in a micro combustor with controlled wall temperature profile[J]. Energy, 2018, 165: 522-531. doi: 10.1016/j.energy.2018.09.120