-
落地油泥是石油开采过程中产生的一种固体废弃物,因其环境危害大,已被列入国家危险固体废弃物名录[1-4]。对其进行有效处理,无疑具有重要的环境保护效益。目前,常用的油泥处理技术有焚烧、萃取、热解、氧化、热洗、生物修复、固化/稳定化等[5-12]。其中,焚烧、热解等技术虽然除油效果很好,但无法回收其中的石油资源;而萃取、热洗等技术存在处理成本高、原油回收效率低等问题[13-20]。
近年来,利用超声波处理油泥技术受到广泛关注。研究发现,超声波的“空化效应”可弱化土壤对原油的黏附作用,提高原油的清洗效率[21-24]。与现有的其他技术相比较,超声波处理技术具有分离效果好、成本低、操作简单等优点[21-26]。然而,研究中也发现,利用超声波处理不同来源油泥时存在效果不稳定、原油回收效率差异大等问题[27-30],具体原因仍然不清楚,但怀疑与油泥中土壤的性质有关。
本研究选取了3种具有代表性的油田落地油泥,在分析土壤颗粒级配、化学组成的基础上,着重考察了土壤性质对超声处理除油效果的影响。同时,利用脱油后的油田油泥土壤进行了原油吸附和超声除油模拟实验,以期为油田落地油泥超声处理技术的开发及规模化应用提供指导。
落地油泥土壤性质对超声除油效果的影响
Influence of oil sludge soil properties on oil removal efficiency by ultrasonic treatment
-
摘要: 落地油泥是油田产生的一类危险固体废弃物,其无害化处理是目前各大油田所面临的重大挑战之一。为了深入认识超声处理过程中油泥土壤性质与超声处理除油效果之间的关系,以不同油田典型落地油泥为研究对象,超声处理后对其土壤残留含油量、土壤颗粒级配、土壤化学组成等进行分析。结果表明:油泥中土壤颗粒粒径较大的大庆、大港落地油泥经超声处理后的除油效果均在60%以上,而土壤颗粒粒径较小的冀东落地油泥超声除油率仅为11%;同时,超声除油效果较好的大庆、大港落地油泥中的钙氧化物含量较低(分别为4.84%和5.94%),而超声除油效果差的冀东落地油泥中的钙氧化物含量较高(11.57%)。进一步的模拟实验结果表明,钙氧化物含量高的土壤对原油的吸附量大、吸附强度高、超声除油效果差,而钙氧化物含量低的土壤吸附量小、吸附强度低、超声除油效果好。以上结果可为油田落地油泥超声处理技术的开发及规模化应用提供指导。Abstract: Oil sludge from oilfield is one kind of hazardous wastes, and its harmless treatment is one of the major challenges faced by the oil field in our country. In order to get better understanding on the relationship between oil sludge soil properties and crude oil removal efficiency by ultrasonic irradiation, typical oil sludge samples from different oilfield were investigated. After the treatment, the residual crude oil content, solid particles diameter distribution and chemical composition of the soil were analyzed, and the results showed that the oil removal efficiency was higher than 60% for Daqing and Dagang oil sludge with the large soil particles diameter treated by ultrasonic, while the oil removal efficiency was only 11% for Jidong oil sludge with the smaller soil particles. Daqing and Dagang oil sludge had low calcium oxides contents of 4.84% and 5.94%, respectively, while Jidong oil sludge had high calcium oxides contents of 11.57%. Further simulation experiments also showed that the soil with high calcium oxides content had large adsorption capacity toward crude oil, high adsorption affinity and low oil removal efficiency by ultrasonic irradiation, while the soil with low calcium oxides content had small crude oil adsorption capacity, low adsorption affinity and good oil removal efficiency. The results from this study could provide supports for the development and large-scale application of the ultrasonic technology treating the oil sludge in the oil fields.
-
Key words:
- oil sludge /
- oil removal by ultrasonic /
- soil particles /
- soil chemical components
-
表 1 3种落地油泥的组分构成
Table 1. Compositions of oil sludge from different oilfields
样品编号 油泥来源 含水/% 含油/% 含固/% JD-L 冀东油田 8.53±0.12 2.70±0.12 88.99±0.12 DQ-L 大庆油田 22.02±1.63 9.552±1.6 68.43±1.63 DG-L 大港油田 17.65±1.79 7.815±1.7 75.91±1.79 表 2 落地油泥土壤颗粒粒径分布及其比表面积
Table 2. Particle size distribution and surface areas of oil sludge soils
油泥样品 油泥来源 比表面积/
(m2·kg−1)粒径/μm d10 d50 DQ-L 大庆油田 311.3 9.4 113.0 DG-L 大港油田 194.9 25.3 254.0 JD-L 冀东油田 424.3 5.1 91.2 表 3 落地油泥土壤中矿物定性及半定量分析结果
Table 3. Qualitative and semi-quantitive results of minerals in oil sludge soils from different oilfields
油泥名称 PDF卡片号 化学式 RIR 相对含量/% 结晶度/% 大庆落地
油泥01-086-1628 SiO2 3.09 36.00 23.64 01-084-0982 Na(AlSi3O8) 0.66 50.00 01-071-1543 K(AlSi3O8) 0.75 14.00 大港落地
油泥01-085-1054 SiO2 3.07 6.90 42.47 01-076-0228 AlPO4 3.01 12.90 01-075-0296 KCl 6.07 1.00 01-084-0982 Na(AlSi3O8) 0.66 79.20 冀东落地
油泥01-086-1629 SiO2 3.10 52.00 27.72 01-072-1245 Na(AlSi3O8) 0.66 48.00 表 4 原油在土壤表面的吸附过程分析
Table 4. Analysis of the adsorption process of crude oil in the soil surface
模拟油泥土壤来源 Logistic模型参数 R2 y1 y2 x0 p 冀东落地油泥 5.07 12.12 2.32 8.66 0.997 大港落地油泥 2.00 10.31 1.93 5.60 0.950 -
[1] 孔令荣, 夏福军, 荆国林. 国内含油污泥的综合利用方法[J]. 能源环境保护, 2011, 25(3): 1-4. doi: 10.3969/j.issn.1006-8759.2011.03.001 [2] 刘志林, 完石光, 于莹. 石化含油污泥的资源化利用[J]. 环境保护与循环经济, 2010, 30(12): 58-61. doi: 10.3969/j.issn.1674-1021.2010.12.021 [3] 郭绍辉, 彭鸽威, 闫光绪, 等. 国内外石油污泥处理技术研究进展[J]. 现代化工, 2008(3): 36-39. doi: 10.3321/j.issn:0253-4320.2008.z2.008 [4] 李鹏华, 李岩涛, 张清宇. 含油污泥的无害化和资源化研究[J]. 精细石油化工进展, 2008, 9(8): 21-23. doi: 10.3969/j.issn.1009-8348.2008.08.007 [5] RIVAS F J. Polycyclic aromatic hydrocarbons sorbed on soils: A short review of chemical oxidation based treatments[J]. Journal of Hazardous Materials, 2006, 138(2): 234-251. doi: 10.1016/j.jhazmat.2006.07.048 [6] SCALA F, CHIRONE R. Fluidized bed combustion of alternative solid fuels[J]. Experimental Thermal & Fluid Science, 2004, 28(7): 691-699. [7] HOU J R, LIU Z C, ZHANG S F, et al. The role of viscoelasticity of alkali/surfactant/polymer solutions in enhanced oil recovery[J]. Journal of Petroleum Science and Engineering, 2005, 47(3/4): 219-235. [8] KARAMALIDIS A K, VOUDRIAS E A. Release of Zn, Ni, Cu, ${\rm{SO}}_4^{2 - }$ and${\rm{CrO}}_4^{2 - }$ as a function of pH from cement-based stabilized/solidified refinery oily sludge and ash from incineration of oily sludge[J]. Journal of Hazardous Materials, 2007, 141(3): 591-606. doi: 10.1016/j.jhazmat.2006.07.034[9] RAMAMURTHY V. Characterization of biosurfactant synthesis in a hydrocarbon utilizing bacterial isolate[J]. Journal of Biochemistry, 2003, 81: 175-180. [10] URUM K, PEKDEMIR T. Evaluation of biosurfactants for crude oil contaminated soil washing[J]. Chemosphere, 2004, 57(9): 1139-1150. doi: 10.1016/j.chemosphere.2004.07.048 [11] MULLIGAN C N. Environmental applications for biosurfactants[J]. Environmental Pollution, 2005, 133(2): 183-198. doi: 10.1016/j.envpol.2004.06.009 [12] LAI C C, HUANG Y C, WEI Y H, et al. Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil[J]. Journal of Hazardous Materials, 2009, 167(1): 609-614. [13] FISHER J A, AND M J S, STOTT A D. Accelerated solvent extraction: An evaluation for screening of soils for selected U.S. EPA semivolatile organic priority pollutants[J]. Environmental Science & Technology, 1997, 31(4): 1120-1127. [14] TAIWO E A, OTOLORIN J A. Oil recovery from petroleum sludge by solvent extraction[J]. Liquid Fuels Technology, 2009, 27(8): 836-844. [15] HU G, LI J, ZENG G. Recent development in the treatment of oily sludge from petroleum industry: A review[J]. Journal of Hazardous Materials, 2013, 261(13): 470-490. [16] BRIDLE T R, PRITCHARD D. Energy and nutrient recovery from sewage sludge via pyrolysis[J]. Water Science & Technology, 2004, 50(9): 169-175. [17] KIM Y, PARKER W. A technical and economic evaluation of the pyrolysis of sewage sludge for the production of bio-oil[J]. Bioresource Technology, 2008, 99(5): 1409-1416. doi: 10.1016/j.biortech.2007.01.056 [18] KWAK T H, MAKEN S, LEE S, et al. Environmental aspects of gasification of Korean municipal solid waste in a pilot plant[J]. Fuel, 2006, 85(14): 2012-2017. [19] SANKARAN S, PANDEY S, SUMATHY K. Experimental investigation on waste heat recovery by refinery oil sludge incineration using fluidised-bed technique[J]. Environmental Letters, 1998, 33(5): 829-845. [20] HEJAZI R F, TAHIR H. Landfarm performance under arid conditions. 2. Evaluation of parameters[J]. Environmental Science & Technology, 2004, 38(8): 2457-2469. [21] MURALI K R, SASINDRAN P. Structural and optical properties of sonoelectrochemically deposited CdSe films[J]. Journal of Materials Science, 2004, 39(20): 6347-6348. doi: 10.1023/B:JMSC.0000043605.15446.60 [22] POLLET B, LORIMER J P, PHULL S S, et al. Sonoelectrochemical recovery of silver from photographic processing solutions[J]. Ultrasonics Sonochemistry, 2000, 7(2): 69-76. doi: 10.1016/S1350-4177(99)00027-9 [23] KANG J, SHIN Y, TAK Y. Growth of etch pits formed during sonoelectrochemical etching of aluminum[J]. Electrochimica Acta, 2006, 51(5): 1012-1016. [24] LIU Y C, LIN L H. New pathway for the synthesis of ultrafine silver nanoparticles from bulk silver substrates in aqueous solutions by sonoelectrochemical methods[J]. Electrochemistry Communications, 2004, 6(11): 1163-1168. doi: 10.1016/j.elecom.2004.09.010 [25] 杨继生, 徐辉. 超声波处理油泥砂脱油实验研究[J]. 石油学报(石油化工), 2010, 26(2): 300-304. [26] 赵晓非张, 刘立新, 等. 新型油泥处理技术展望[J]. 化工进展, 2016, 35(S1): 276-280. [27] NA S, PARK Y, HWANG A, et al. Effect of ultrasound on surfactant-aided soil washing[J]. Japanese Journal of Applied Physics, 2007, 46(7): 4775-4778. [28] NING X, WANG W, HAN P, et al. Effects of ultrasound on oily sludge deoiling[J]. Journal of Hazardous Materials, 2009, 171(1): 914-917. [29] FENG D, ALDRICH C. Sonochemical treatment of simulated soil contaminated with diesel[J]. Advances in Environmental Research, 2000, 4(2): 103-112. doi: 10.1016/S1093-0191(00)00008-3 [30] JIN Y, ZHENG X, CHU X, et al. Oil recovery from oil sludge through combined ultrasound and thermochemical cleaning treatment[J]. Industrial & Engineering Chemistry Research, 2012, 51(27): 9213-9217. [31] CALLESEN I, KECK H, ANDERSEN T J. Particle size distribution in soils and marine sediments by laser diffraction using Malvern Mastersizer 2000-method uncertainty including the effect of hydrogen peroxide pretreatment[J]. Journal of Soils and Sediments, 2018, 18(7): 2500-2510. doi: 10.1007/s11368-018-1965-8 [32] 杨雅秀, 苏昭冰. 粘土矿物X射线衍射法定量研究(下)[J]. 中国非金属矿工业导刊, 1994(5): 19-25. [33] 刘玉祥, 王开亮, 胡沛青, 等. 页岩中矿物组分测定方法探讨[J]. 天然气地球科学, 2015, 26(9): 1737-1743. [34] 杨雅秀, 苏昭冰, 陈正国. 粘土矿物X射线衍射法定量研究(上)[J]. 建材地质, 1994(4): 28-34.