-
铬污染土壤因对人体的巨大危害[1-2]而被广泛关注,一直以来许多专家学者都致力于铬污染土壤的还原修复[3-5]。近年来,由于修复后的铬污染土壤出现严重的“返黄”现象,使得修复后土壤的长期稳定性成为限制铬污染土壤修复工作开展的亟待解决的难点问题[6]。
铬污染土壤修复治理通常采用化学还原技术,通过投加化学还原药剂将土壤中的Cr(Ⅵ)还原为Cr(Ⅲ),但经还原后的铬离子仍然留在土壤中,其价态及生物有效性也可能随着环境的变化而改变[7]。部分研究认为,修复后的铬污染土壤“返黄”,主要是由于外部环境改变导致土壤中的Cr(Ⅲ)被重新氧化成Cr(Ⅵ)。APTE等[6]的研究表明,当Cr(OH)3和MnO2共同悬浮在溶液中时,60 d内Cr(Ⅵ)转化率达1%,且有氧条件下更高。祁光霞等[8]研究发现,增加土壤中的Mn含量,在一定的养护时间内,土壤中Cr(Ⅵ)含量可增加8.5%~21.6%。以上研究表明,在一定含量氧化剂存在的情况下,土壤中的Cr(Ⅲ)有被氧化为Cr(Ⅵ)的风险,但在正常自然条件下,经还原后的Cr(Ⅲ)能否再被自然氧化物质氧化为Cr(Ⅵ),还需要进一步探究,而目前长期对经还原后的实际Cr(Ⅵ)污染土壤跟踪采样分析的研究还鲜见报道。
本研究选取具有高还原性能的CaS4、土壤修复中广泛使用的FeSO4·7H2O和环境友好的葡萄糖3种化学还原剂[9]对3种不同类型的污染土壤进行还原修复,通过对修复后土壤中Cr(Ⅵ)浓度进行定时取样检测,以评估不同药剂还原不同类型的实际Cr(Ⅵ)污染土壤的长期稳定性。同时设置干燥和淹水2个条件,研究了水分条件对土壤长期稳定性的影响,为Cr(Ⅵ)污染土壤的实际修复提供参考。
不同还原药剂修复Cr(Ⅵ)污染土壤的稳定性评估
Stability evaluation of Cr(Ⅵ)-contaminated soils restoration with different reducing agents
-
摘要: 针对目前铬污染场地修复后的长期稳定性问题,选用轻、重污染土壤和表层渣土混合物为研究对象,在分析其理化特性的基础上,对经CaS4、FeSO4·7H2O和葡萄糖还原后土壤的长期稳定性进行评估,通过设置干燥和淹水2个条件,探究了水分对Cr(Ⅵ)污染土壤长期稳定性的影响。结果表明:针对3种不同类型铬污染土壤,投加CaS4对土壤中Cr(Ⅵ)的还原效果较FeSO4·7H2O和葡萄糖好;在360 d的采样周期内,干燥条件下的3种土壤经CaS4处理后Cr(Ⅵ)浓度均保持稳定,经FeSO4·7H2O和葡萄糖药剂还原后,渣土混合物中Cr(Ⅵ)波动幅度较大,其余2种土壤呈稳定状态;淹水密闭条件下的3种土壤中Cr(Ⅵ)浓度均有下降趋势,特别是渣土混合物在投加FeSO4·7H2O和葡萄糖药剂处理后,下降趋势更为明显;在长期稳定性方面,在360 d的实验周期内,与淹水密闭条件相比,经还原修复后的Cr(Ⅵ)污染土壤在干燥条件下的稳定性更强;Cr(Ⅵ)污染土壤经还原后,有效的过量还原剂能在一定程度上抑制土壤中Cr(Ⅵ)浓度变化,且在淹水密闭条件下,土壤中Cr(Ⅵ)浓度呈下降趋势。Abstract: Light and heavy Cr(Ⅵ)-contaminated soils and the mixture of Cr(Ⅵ) slag and soil were selected to study the long-term stability after Cr(Ⅵ)-contaminated soil remediation. Based on the physical and chemical properties of these soils, the long-term stability of the reduced soils by respective CaS4, FeSO4·7H2O or glucose were assessed. Under dry and flooding conditions, the effect of moisture on the long-term stability of the Cr(Ⅵ)-contaminated soil treated by reducing agents were investigated. The results showed that CaS4 had better reduction effect on the three kinds of contaminated soils than FeSO4·7H2O and glucose. During the 360 d sampling period, the Cr(Ⅵ) concentrations in these CaS4 reduced soils remained stable under dry condition. The Cr(Ⅵ) concentrations in the light and heavy polluted soils after the FeSO4·7H2O or glucose treatment remained stable, while the Cr(Ⅵ) concentration in the FeSO4·7H2O or glucose treated mixture of Cr(Ⅵ) slag and soil fluctuated greatly. Under flooding and sealing condition, the Cr(Ⅵ) concentrations in the three kinds of soil after reduction showed a decreasing trend. Especially, the Cr(Ⅵ) concentration in FeSO4·7H2O or glucose treated mixture of Cr(Ⅵ) slag and soil decreased significantly. During the 360 d sampling period, the Cr(Ⅵ)-contaminated soils after reduction remediation showed stronger long-term stability under dry condition than that under flooding condition. After Cr(Ⅵ)-contaminated soil remediation, excessive reducing agent could inhibit the change of Cr(Ⅵ) concentration in soil to certain extent, and the Cr(Ⅵ) concentration showed a decreasing trend under flooding condition.
-
表 1 供试土壤的物理特性
Table 1. Physical properties of the contaminated soils
土样名称 污染土壤类型 pH 有机质/(mg·kg−1) 土壤颗粒质量分数/% 黏粒(0~0.002 mm) 粉粒(0.002~0.05 mm) 砂粒(0.05~2 mm) A土 渣土混合物 7.76 18.14 3.19 47.93 49.78 B土 重度污染土壤 10.64 18.05 1.63 33.19 65.18 C土 轻度污染土壤 8.8 28.08 5.97 84.82 9.21 表 2 供试土壤化学特性
Table 2. Chemical properties of the contaminated soils
土样名称 总Cr/(mg·kg−1) Cr(Ⅵ)/(mg·kg−1) 酸溶态Cr(Ⅵ)/(mg·L−1) 水溶态Cr(Ⅵ)/(mg·L−1) 酸溶态Cr(Ⅵ)占比/% 水溶态Cr(Ⅵ)占比/% A土 11 388.77 911.54 37.39 34.42 41.01 37.76 B土 1 648.91 1 560.63 130.11 155.86 83.37 99.87 C土 1 457.7 270.25 24.05 24.49 88.99 90.61 -
[1] MUKHERJEE K, RUMPA S, ANIRUDDHA G, et al. Chromium removal technologies[J]. Research on Chemical Intermediates, 2013, 39(6): 2267-2286. doi: 10.1007/s11164-012-0779-3 [2] COSTA M, KLEIN C B. Toxicity and carcinogenicity of chromium compounds in humans[J]. Critical Reviews in Toxicology, 2006, 36(2): 155-163. doi: 10.1080/10408440500534032 [3] SONG J K, TOWNSENG T, SOLO-GARBRIELE H, et al. Hexavalent chromium reduction in soils contaminated with chromated copper arsenate preservative[J]. Soil and Sediment Contamination, 2006, 15(4): 387-399. doi: 10.1080/15320380600751751 [4] MARIA C, CHAD P J, GEETA D. A comparative evaluation of hexavalent chromium treatment in contaminated soil by calcium polysulfide and green-tea nanoscale zero-valent iron[J]. Journal of Hazardous Materials, 2012, 201-202: 33-42. doi: 10.1016/j.jhazmat.2011.11.003 [5] POLTI M A, ATJIAN M C, AMOROSO M J, et al. Soil chromium bioremediation synergic activity of actinobacteria and plants[J]. International Biodeterioration & Biodegradation, 2011, 65(8): 1175-1181. [6] APTE A D, TARE V, BOSE P. Extent of oxidation of Cr(Ⅲ) to Cr(Ⅵ) under various conditions pertaining to natural environment[J]. Journal of Hazardous Materials, 2006, 128(2/3): 164. [7] 徐衍忠, 秦绪娜, 刘祥红, 等. 铬污染及其生态效应[J]. 环境科学与技术, 2002, 25(增): 8-9. [8] 祁光霞, 查金, 孟伟, 等. Mn(IV)对多硫化钙处理的铬污染土壤的Cr(VI)含量的影响[J]. 环境卫生工程, 2019, 27(3): 17-22. doi: 10.3969/j.issn.1005-8206.2019.03.005 [9] GRAHAM M C, FARMER J G, ANDERSON P, et al. Calcium polysulfide remediation of hexavalent chromium contaminationfrom chromite ore processing residue[J]. Science of the Total Environment, 2006, 364(1/2/3): 32-44. [10] 史开宇, 颜湘华, 范琴, 等. 铬污染场地渣土混合物的化学还原修复[J]. 环境工程学报, 2019, 13(4): 963-968. doi: 10.12030/j.cjee.201809069 [11] 国家环境保护总局. 固体废物浸出毒性浸出方法硫酸硝酸法: HJ/T 299-2007[S]. 北京: 中国环境科学出版社, 2007. [12] 国家环境保护总局. 固体废物浸出毒性浸出方法翻转法: GB 5086.1-1997[S]. 北京: 中国环境科学出版社, 1997. [13] 国家环境保护局. 水质六价铬的测定二苯碳酰二肼分光光度法: GB 7467-1987[S]. 北京: 中国环境科学出版社, 1987. [14] 环境保护部. 固体废物六价铬的测定碱消解/火焰原子吸收分光光度法: HJ 687-2014[S]. 北京: 中国环境科学出版社, 2014. [15] KANCHINADHAM S B K, LOGANATHAN V D, KALYANARAMAN C. A preliminary study on leachability of chromium from a contaminated site[J]. Environmental Progress & Sustainable Energy, 2012, 32(4): 1096-1100. [16] 王贵, 张丽洁. 海湾河口沉积物重金属分布特征及形态研究[J]. 海洋地质动态, 2002, 18(12): 1-5. doi: 10.3969/j.issn.1009-2722.2002.12.001 [17] 伍光和, 王乃昂, 胡双熙, 等. 自然地理学[M]. 北京: 高等教育出版社, 2007. [18] GUERTIN J, JACOBS J A, AVAKIVN C P. Chromium(VI) Handbook[M]. Boca Raton: CRC Press, 2005. [19] PREVOT B A, GINEPRO M, PERACACIOLO E, et al. Chemical vs bio-mediated reduction of hexavalent chromium: An in-vitro study for soil and deep waters remediation[J]. Geoderma, 2018, 312: 17-23. doi: 10.1016/j.geoderma.2017.09.032