-
当今,随着经济的快速增长,人类开发矿产资源的力度不断加大,由此引发的废物、废水和废气的积累对环境造成了很大的破坏[1-2]。同时在土壤耕作的过程中,化肥、农药和助剂的不合理使用也会导致土壤环境日益恶化,尤其是重金属污染土壤的现象日趋严重,这已成为备受人们关注的热点环境问题[3]。作为典型重金属污染物之一的镉(cadmium,Cd),由于其具有强生物毒性和流动性,并可通过土壤-植物系统转移富集,从而通过食物链对人类健康造成威胁。另外,Cd等重金属难于通过微生物降解或者化学分解而减少危害,其往往会长期存在于受污染的土壤中[4-5]。因此,Cd污染土壤已成为人类和环境健康安全的大隐患。海南省现有的富硒土壤(Se含量≥0.4 mg·kg−1)占全岛总面积的28%以上,说明其在利用富硒土壤资源开发热带富硒农产品方面具有明显的区域优势。但富硒土壤具有伴生Cd等重金属的效应,因此,海南在利用富硒土壤资源的过程中,应正视Cd等重金属污染的潜在风险,这对促进富硒土壤资源的科学利用具有重要的现实意义。
针对重金属污染土壤的几种修复技术,如物理修复技术、化学修复技术、生物修复技术和植物修复技术等[6],已经被开发且广泛应用。目前,原位钝化技术[7-8]因具有环境安全性、简便高效性和低成本性等优点,能减轻生物毒性并降低污染土壤中重金属的生物有效性和利用度,常被用来修复重金属污染土壤。其钝化修复原理是通过添加钝化剂到重金属污染土壤中,促进钝化剂与重金属之间发生吸附、络合、离子交换和氧化还原等一系列作用和反应,从而改变重金属在土壤中的赋存形态,降低其活性,最终实现对重金属污染土壤的修复作用。在众多的钝化修复剂中,磷酸盐、黏土矿物、碱性物质和有机物质等为人们常用[9]。在控制污染土壤中重金属的迁移与转化方面,土壤有机质被认为是最重要的决定因素[10],其中,腐殖质是土壤有机质的主要组成部分。腐殖质依据其在酸、碱溶液中溶解度的不同可分为富里酸(fulvic acids,FA)、胡敏酸(humic acids,HA)和胡敏素(humin,HM)[11]。关于腐殖质对环境中重金属影响的研究大多集中于探讨HA/FA和重金属之间的相互作用方面,有关HM对重金属的环境意义的研究相对较少[12-14]。对于占腐殖质绝大部分的HM,含有大量—COOH、—OH等活性基团,分子质量大且理化性质稳定,可与土壤中重金属发生吸附络合作用[15],从而对土壤中重金属的行为产生关键影响。赤铁矿(hematite,α-Fe2O3)具有一定的吸附性和磁性[16],STAHL等[17]报道,α-Fe2O3通过交换性和非交换性吸附2种模型,吸附土壤中Cd2+、Co2+、Cu2+、Pb2+、Zn2+等重金属,具有防止重金属继续转移扩散的作用。PALLO[18]提出,HM可与土壤中的铁矿物发生相互作用,带负电的HM会依附在带正电的矿物表面膜上,从而形成胡敏素-赤铁矿复合体(HM-α-Fe2O3),且HM和α-Fe2O3结合的程度很大部分取决于它们的分子质量、分子结构和所含有的官能团。
在前人研究[16, 19-20]的基础上,本研究从富硒土壤中提取HM,并将HM和α-Fe2O3进行混合,比较了复合体(HM-α-Fe2O3)、单体(HM)、单体(α-Fe2O3) 3种物质作为富硒土壤中外源Cd污染的钝化剂的应用效果,从对土壤pH(氢潜力)、有效态Cd浓度、Cd形态分布的影响着手进行了分析,可为富硒土壤中重金属污染的修复提供参考。
胡敏素-赤铁矿复合物对外源添加镉污染富硒土壤的钝化
Passivation effect of humin-hematite complexes on exogenous cadmium-contaminated selenium-enriched soil
-
摘要: 以本地富硒土壤提取的胡敏素(humin,HM)、制备的赤铁矿(hematite,α-Fe2O3)和胡敏素-赤铁矿复合物(HM-α-Fe2O3)作为钝化剂,对富硒土壤中的镉(Cd)进行钝化研究。结果表明,有效态Cd浓度与pH呈显著负相关(r=−0.729)(0.01<P<0.05)。与空白对照组(CK)处理对比,添加3种不同水平用量的HM(H1~H3),α-Fe2O3(F1~F3)和HM-α-Fe2O3 [(F-H)1~(F-H)3]处理并培养60 d后,土壤中有效Cd浓度分别降低14.21%~22.96%、21.25%~37.55%和13.45%~27.75%;可交换态Cd的浓度分别降低17.77%~23.34%、33.93%~45.39%和18.56%~22.07%。比较不同钝化剂的钝化效果,发现单独钝化剂中最佳处理组为F2(20 d),有效态Cd浓度的降低幅度最大(37.55%),但施加量也最大,易导致土壤碱性化;HM钝化剂在5 d达到最佳效果(H2);HM-α-Fe2O3中最佳处理组为(F-H)3(60 d),有效态Cd浓度的降低量与钝化剂用量、钝化时间都呈极显著正相关(r=0.631,0.428)(P<0.01),说明其钝化效果与钝化剂用量、钝化时间呈现较好的线性增长关系,施用率低且效果明显。因此,HM适用于短期修复,而HM-α-Fe2O3适用于长期修复。HM与α-Fe2O3复合应用为充分利用土壤腐殖质和控制重金属流动性提供了新途径。
-
关键词:
- 富硒土壤 /
- 镉 /
- 胡敏素-赤铁矿复合物 /
- 钝化 /
- 形态分布
Abstract: The cadmium (Cd) in selenium-enriched soil was passivated by using the following passivating agents: humin (HM) extracted from local selenium-enriched soil, prepared hematite (α-Fe2O3) and humin-hematite complex (HM-α-Fe2O3). The results showed that pH was negatively correlated (r=−0.729) with the concentration of available Cd (0.01<P<0.05). In comparison with control (CK) group, the concentrations of available Cd in the soils subjected to 60 d incubation after additions of HM (H1~H3), α-Fe2O3 (F1~F3) and HM-α-Fe2O3 [(F-H)1~(F-H)3] at three dosages decreased by 14.21%~22.96%, 21.25%~37.55% and 13.45%~27.75%, respectively. And the concentrations of exchangeable Cd decreased by 17.77%~23.34%, 33.93%~45.39% and 18.56%~22.07%, respectively. Through the passivation effect comparison among different repair agents, F2 (20 d) group was the best treatment one in individual repair agents with the maximum reduction ratio of 37.55% for available Cd, but the dosage was also the largest which easily led to soil alkalization. HM achieved the best passivating effect in 5 days (H2). The best treatment group in HM-α-Fe2O3 was (F-H)3 (60 d), and the decrease of available Cd concentration of was significantly positively correlated (r=0.631, 0.428) with the dosage of passivation agent and passivation time (P<0.01), which indicated that the passivation effect presented a good linear growth relationship with the dosage and time, and low application and marked effect. Therefore, HM was suitable for a short-term repair, while HM-α-Fe2O3 were the best choice for a long-term repair. The application of HM combined with α-Fe2O3 as repair agents provided a new way for both making full use of humus and controlling metal mobility.-
Key words:
- selenium-enriched soils /
- cadmium /
- humin-hematite complexes /
- passivation /
- species distributions
-
表 1 富硒土壤的基本性质
Table 1. Basic properties of selenium-enriched soil
pH (H2O) 有机质/(g·kg−1) 全磷/(mg·kg−1) 全氮/(mg·kg−1) 5.77 17.75 1 000 1 400 CEC/(cmol·kg−1) 速效钾/(mg·kg−1) 总Se/(mg·kg−1) 总Cd/(mg·kg−1) 34.8 179 0.466 0.05 表 2 不同处理组对富硒土壤pH的影响
Table 2. Effects of different treatments on selenium-enriched soil pH
样品编号 土壤pH 0 d 5 d 10 d 20 d 60 d CK 5.84±0.00fg 5.93±0.02e 5.87±0.03f 5.93±0.01fg 5.88±0.01f H1 5.94±0.00e 5.95±0.00e 5.83±0.01f 5.93±0.01fg 5.97±0.00f H2 5.98±0.05e 5.96±0.01e 5.96±0.00e 6.07±0.02e 6.11±0.01e H3 6.11±0.00d 6.09±0.02d 6.21±0.01d 6.24±0.02d 6.31±0.00d F1 6.60±0.01c 6.70±0.05c 6.77±0.04c 6.86±0.03c 6.97±0.08c F2 7.36±0.10b 7.31±0.04b 7.56±0.11b 7.58±0.07b 7.60±0.10b F3 7.61±0.02a 7.60±0.00a 7.84±0.02a 7.88±0.09a 7.88±0.04a (F-H)1 5.85±0.01fg 5.98±0.06e 5.81±0.01f 5.97±0.03f 5.93±0.00f (F-H)2 5.90±0.01ef 5.81±0.03f 5.83±0.00f 5.86±0.01g 5.97±0.00f (F-H)3 5.81±0.01g 5.77±0.00f 5.82±0.00f 5.89±0.01fg 5.96±0.02f 注:根据Duncan检验,相同的字母表示各种处理组在P=0.05(n=3)时没有显著差异。 -
[1] GARAU G, CASTALDI P, SANTONA L, et al. Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil[J]. Geoderma, 2007, 142(1/2): 47-57. [2] LIU W, YANG Y S, LI P J, et al. Risk assessment of cadmium-contaminated soil on plant DNA damage using RAPD and physiological indices[J]. Journal of Hazardous Materials, 2009, 161(2/3): 878-883. [3] HUANG B, Li Z, HUANG J, et al. Aging effect on the leaching behavior of heavy metals (Cu, Zn, and Cd) in red paddy soil[J]. Environmental Science & Pollution Research, 2015, 22(15): 11467-11477. [4] ADRIANO D C, WENZEL W W, VANGRONSVELD J, et al. Role of assisted natural remediation in environmental cleanup[J]. Geoderma, 2004, 122(2/3/4): 121-142. [5] GUO G, ZHOU Q, MA L Q. Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: A review[J]. Environmental Monitoring and Assessment, 2006, 116(1/2/3): 513-528. [6] BIAN R, JOSEPH S, CUI L, et al. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment[J]. Journal of Hazardous Materials, 2014, 272: 121-128. doi: 10.1016/j.jhazmat.2014.03.017 [7] XU N, TAN G, WANG H, et al. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure[J]. European Journal of Soil Biology, 2016, 74: 1-8. doi: 10.1016/j.ejsobi.2016.02.004 [8] XU Y, FANG Z, TSANG E P. In situ immobilization of cadmium in soil by stabilized biochar-supported iron phosphate nanoparticles[J]. Environmental Science and Pollution Research, 2016, 23(19): 19164-19172. doi: 10.1007/s11356-016-7117-z [9] HUANG M, ZHU Y, LI Z, et al. Compost as a soil amendment to remediate heavy metal-contaminated agricultural soil: Mechanisms, efficacy, problems, and strategies[J]. Water, Air & Soil Pollution, 2016, 227(10): 359-377. [10] ZHOU T, WU L, LUO Y, et al. Effects of organic matter fraction and compositional changes on distribution of cadmium and zinc in long-term polluted paddy soils[J]. Environmental Pollution, 2017, 232: 1-9. [11] ANDRE V Z, COMANS R N J. Measurement of humic and fulvic acid concentrations and dissolution properties by a rapid batch procedure[J]. Environmental Science and Technology, 2007, 41(19): 6755-6761. doi: 10.1021/es0709223 [12] HORI M, SHOZUGAWA K, MATSUO M. Reduction process of Cr(VI) by Fe(II) and humic acid analyzed using high time resolution XAFS analysis[J]. Journal of Hazardous Materials, 2015, 285: 140-147. [13] JANOS P, VACLAV H, PETRA B, et al. Reduction and immobilization of hexavalent chromium with coal-and humate-based sorbents[J]. Chemosphere, 2009, 75(6): 732-738. [14] YAN M, MA J, JI G, et al. Examination of effects of Cu(II) and Cr(III) on Al(III) binding by dissolved organic matter using absorbance spectroscopy[J]. Water Research, 2016, 93: 84-90. doi: 10.1016/j.watres.2016.02.017 [15] CHEN J H, LIU Q L, HU S R, et al. Adsorption mechanism of Cu(II) ions from aqueous solution by glutaraldehyde crosslinked humic acid-immobilized sodium alginate porous membrane adsorbent[J]. Chemical Engineering Journal, 2011, 173(2): 511-519. doi: 10.1016/j.cej.2011.08.023 [16] 王文成. 含铁矿物还原特性及强化土壤修复研究 [D]. 上海: 同济大学, 2008. [17] STAHL R S, JAMES B R. Zinc sorption by iron-oxide-coated sand as a function of pH[J]. Soil Science Society of America Journal, 1991, 55(5): 1287. doi: 10.2136/sssaj1991.03615995005500050015x [18] PALLO F. Evolution of organic matter in some soils under shifting cultivation practices in Burkina Faso[M]//MULONGOY K, MERCKX R. Soil Organic Matter Dynamics and the Sustainability of Tropical Agriculture. John Wiley and Sons, 1993: 109-120. [19] 李丽明, 丁玲, 姚琨, 等. 胡敏素钝化修复重金属Cu(Ⅱ)、Pb(Ⅱ)污染土壤[J]. 环境工程学报, 2016, 10(6): 3276-3280. [20] 王雅辉. 胡敏素对土壤中Cu、Pb的钝化作用研究[D]. 广州: 广东工业大学, 2017. [21] GARDI C. Land use, agronomic management and water quality in a small Northern Italian watershed[J]. Agriculture Ecosystems & Environment, 2001, 87(1): 1-12. [22] ANDRE H R, OLIVERIRA L C D, IRAMAIA C B, et al. Influence of alkaline extraction on the characteristics of humic substances in Brazilian soils[J]. Thermochimica Acta, 2005, 433(1): 77-82. [23] MULVANEY P, COOOPER R, GRIESER F, et al. Charge trapping in the reductive dissolution of colloidal suspensions of iron(III) oxides[J]. Langmuir, 1988, 4(5): 1206-1211. doi: 10.1021/la00083a028 [24] LINDSAY E L, NORVELL W A. Development of a DTPA soil test for zinc, iron, manganese, and copper[J]. Soil Science Society of America Journal, 1978, 42: 421-428. doi: 10.2136/sssaj1978.03615995004200030009x [25] TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particular trace elements[J]. Environmental Technology, 1979, 51: 844-851. [26] CORNELL R M. The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses, Second Edition[M]. Weinheim: Wiley-VCH, 2004. [27] NAIDU R, BOLAN N S, KOOKANA R S, et al. Ionic﹕Strength and pH effects on the sorption of cadmium and the surface charge of soils[J]. European Journal of Soil Science, 2006, 45(4): 419-429. [28] QUEROL X, ANDRES A, NATALIA M, et al. Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash[J]. Chemosphere, 2006, 62(2): 171-180. doi: 10.1016/j.chemosphere.2005.05.029 [29] JAFARNEJADI A R, SAYYAD G, HOMAEE M, et al. Spatial variability of soil total and DTPA-extractable cadmium caused by long-term application of phosphate fertilizers, crop rotation and soil characteristics[J]. Environmental Monitoring and Assessment, 2013, 185(5): 4087-4096. doi: 10.1007/s10661-012-2851-2 [30] CUI L, PAN G, LI L, et al. Continuous immobilization of cadmium and lead in biochar amended contaminated paddy soil: A five-year field experiment[J]. Ecological Engineering, 2016, 93: 1-8. doi: 10.1016/j.ecoleng.2016.05.007 [31] CHEN Z S, LEE G J, LIU J C. The effects of chemical remediation treatments on the extractability and speciation of cadmium and lead in contaminated soils[J]. Chemosphere, 2000, 41(1): 235-242. [32] LIU L J, DONG Y H, LIU Y, et al. Effects of various amendments on the fractions of cadmium in a polluted soil[J]. Journal of Agro-Environment Science, 2013, 32(9): 1778-1785.