-
近年来,汽车工业飞速发展,汽车保有量持续增加,这给人们出行带来了极大便利但同时也产生了大量的废轮胎。据统计,2015年,我国产生废轮胎3.3×108条,超过1.2×106 t,已成为世界上产生废轮胎最多的国家[1]。废橡胶不易降解,堆积、填埋、焚烧都会对大气、土壤、水源造成污染,如何处理日益增加的废橡胶已经成为一个严重的环境问题。自20世纪70年代,美国、瑞典、英国、法国等先后开展了橡胶沥青和橡胶粉沥青混合料的应用研究和铺路实验,极大地促进了废轮胎在道路工程中的利用[2]。我国自20世纪80年代,开始对胶粉沥青进行研究应用。将废轮胎胶粉用于制备胶粉改性沥青,能够大量消耗废轮胎,同时也能够显著改善路面的耐磨、抗老化、抗开裂等性能,对于满足飞速发展的公路建设需求具有重要的意义[3-5]。
胶粉改性沥青性能的改善来源于胶粉与沥青之间的相互作用,但两者之间的作用十分复杂。关于胶粉改性沥青中胶粉与沥青相互作用机理至今仍存在争议,目前主要有物理共混机理、网络填充机理、化学共混机理和溶胀降解机理等几种不同观点[5-6]。其中获得较多人支持的观点[7]认为,废胶粉和沥青混合后,胶粉发生溶胀和部分溶解而在沥青中扩散,这些高分子链和沥青轻质组分在胶粉表面形成界面层。同时,界面层的外围吸附沥青中的胶质形成界面过渡层。界面层与沥青中胶团(沥青质和胶质)的外层胶质有亲和作用,使沥青中的胶团与废胎胶粉表面的界面层通过界面过渡层紧紧地结合为一体,形成了废胎胶粉和沥青连续或相互交错的三维空间网络结构。但这个三维网状结构多是通过范德华力缔结的,因此,这种结构较不稳定,对长时间和高温下的存储较为不利[8]。同时也有研究[7]表明,胶粉表面特征官能团与沥青中特征基团的化学作用,能够显著影响胶粉改性沥青的性能。
通过对废轮胎胶粉进行表面化学改性[9-11]、脱硫改性[12-14]、微波改性[15]、共混改性[16-21]等,能够显著改善胶粉表面的物理化学结构,增强胶粉界面层与沥青胶团的相互作用,改善胶粉改性沥青的性能。于凯等[9-10]采用H2O2和次氯酸钠等为氧化剂改性废轮胎胶粉,在胶粉表面形成羟基、环氧基等有机官能团,能够与沥青中的羧基等基团发生化学反应,形成强相互作用,使改性沥青的软化点显著提高。而脱硫改性能够部分切断交联橡胶中的S—S键和C—S键,使废轮胎胶粉中的交联网状结构部分破坏,在沥青中溶胀更加充分,界面结合层厚度显著提高,使脱硫胶粉改性沥青延度提高,黏度降低,低温性能和加工性能明显改善[12-14]。通过以上研究不难发现,在废轮胎胶粉表面修饰特定有机官能团或者增加胶粉-沥青界面结合层的厚度,能够显著提高胶粉改性沥青的界面相容性和界面结合强度,改善胶粉改性沥青的高/低温性能。
由于橡胶的主要成分是聚烯烃,其表面存在着丰富的不饱和键,因此,通过接枝聚合改性的方法,能够在橡胶表面接枝不同的聚合物链段,可以对橡胶的物理化学性质起到明显的改善作用。目前常见的橡胶接枝聚合改性方法包括乳液聚合[22-24]、溶液聚合[25-26]、本体聚合[27-28]和辐射接枝[29]等,常见的接枝单体包括苯乙烯、甲基丙烯酸甲酯、甲壳素、马来酸酐等。其中乳液聚合以水为分散介质,条件较为温和,更适于在橡胶粉表面的接枝聚合改性。通过接枝聚合改性的方法将特定的聚合物链段接枝到废轮胎胶粉的表面,可以显著增加胶粉-沥青界面层的厚度,从而增强胶粉-沥青界面相容性与结合强度。但到目前为止,采用接枝聚合改性胶粉制备胶粉改性沥青的研究还未见报道。
本研究尝试在废轮胎胶粉表面接枝聚苯乙烯链段,并将其用于制备湿法胶粉改性沥青;利用废轮胎胶粉表面的接枝聚苯乙烯链段,提高胶粉/沥青界面层与沥青中胶质的相互作用,增强胶粉与沥青的界面结合强度;系统研究废轮胎胶粉表面聚苯乙烯链段的接枝率对胶粉改性沥青25 ℃针入度、5 ℃延度和软化点等主要性能指标的影响规律,探讨废轮胎胶粉的接枝改性对胶粉改性沥青性能的影响机理,为胶粉改性沥青的界面增强和性能调控机制研究提供参考。
聚苯乙烯接枝胶粉对改性沥青性能的影响
Impacts of polystyrene grafting modified crumb tire rubber on the property of modified bitumen
-
摘要: 采用苯乙烯对废轮胎胶粉进行表面接枝聚合改性,并将接枝改性胶粉用于制备湿法胶粉改性沥青。接枝改性后,废轮胎胶粉的X射线光电子能谱和13C固体核磁检测结果表明,苯乙烯链段成功接枝到废轮胎胶粉表面,同时系统研究了苯乙烯接枝率对胶粉改性沥青25 ℃针入度、软化点和5 ℃延度的影响规律。实验结果表明,当苯乙烯接枝率小于36%时,随着苯乙烯接枝率的提高,胶粉改性沥青的25 ℃针入度和5 ℃延度增大,软化点下降,说明胶粉表面苯乙烯链段的接枝,能够显著提高胶粉-沥青的界面相容性;当苯乙烯接枝率为36%时,胶粉改性沥青的5 ℃延度达到11.0 cm,相比于普通胶粉改性沥青(7.0 cm)提高了57%;但当苯乙烯接枝率大于36%时,随着苯乙烯接枝率的提高,胶粉改性沥青的25 ℃针入度和5 ℃延度下降,软化点升高,表明胶粉-沥青界面层中过量的聚苯乙烯链段,使胶粉改性沥青的低温延展性有所降低。通过分析可知,在胶粉表面接枝适当比例的聚苯乙烯能够显著改善胶粉改性沥青的低温延展性能。Abstract: The crumb tire rubber (CTR) was grafting modified by styrene and the modified CTR was used to prepare the rubber modified bitumen. The XPS and 13C solid state NMR characterizations of modified CTR confirmed the successful grafting of styrene on CTR. The effects of the styrene grafting ratio on the 25 ℃ penetration, softening point, and 5 ℃ ductility of rubber modified bitumen were investigated. The results showed that with the increase of grafting ratio of polystyrene (<36%), 25 ℃ penetration and 5 ℃ ductility of the polystyrene grafting rubber modified bitumen increased, while its softening point decreased, which indicated that the grafting of polystyrene could improve the interface compatibility between CTR and bitumen. At the grafting ratio of styrene of 36%, the 5 ℃ ductility of the polystyrene grafting rubber modified bitumen reached 11.0 cm, which was 57% higher than that of original rubber modified bitumen (7.0 cm). However, at the grafting ratios of styrene above 36%, its 25 ℃ penetration and 5 ℃ ductility decreased, while its softening point increased, which indicated that excessive polystyrene chains on the interface between crumb tire rubber and bitumen led to the decrease of ductility and malleability of rubber modified bitumen. According to all the analysis, it can be concluded that the proper amount of polystyrene grafting can significantly improve the low temperature performance of rubber modified bitumen.
-
Key words:
- crumb tire /
- rubber /
- polystyrene /
- grafting ratio /
- modified bitumen
-
表 1 胶粉表面碳元素的化学键存在形式
Table 1. Chemical bonds on the surface of three crumb tire rubbers
碳原子种类 结合能/eV 未接枝胶粉/% 接枝改性胶粉中碳元素含量/% 接枝率6% 接枝率36% 接枝率46% 脂肪链碳 284.8 98.5 92.8 91.1 87.5 芳香环碳 289.0 1.5 7.2 8.9 12.5 表 2 胶粉与聚苯乙烯共混制备改性沥青的性能指标
Table 2. Main properties of bitumen prepared through mixing crumb tire rubber with polystyrene
聚苯乙烯含量/% 25 ℃针入度/(0.1 mm) 5 ℃延度/cm 软化点/℃ 0 40 7.0 68.2 18 45 8.2 64.1 36 48 8.3 62.5 100 55 4.4 57.4 -
[1] LO PRESTI D. Recycled tyre rubber modified bitumens for road asphalt mixtures: A literature review[J]. Construction and Building Materials, 2013, 49: 863-881. doi: 10.1016/j.conbuildmat.2013.09.007 [2] 杨志峰, 李美江, 王旭东. 废旧橡胶粉在道路工程中应用的历史和现状[J]. 公路交通科技, 2005, 22(7): 19-21. doi: 10.3969/j.issn.1002-0268.2005.07.005 [3] 颜鹤. 废胶粉改性沥青研究进展[J]. 科技创新导报, 2011, 14(1): 52-53. doi: 10.3969/j.issn.1674-098X.2011.01.040 [4] PEREIRA S M S, OLIVEIRA J R M, FREITAS E F, et al. Mechanical performance of asphalt mixtures produced with cork or rubber granulates as aggregate partial substitutes[J]. Construction and Building Materials, 2013, 41: 209-215. doi: 10.1016/j.conbuildmat.2012.12.005 [5] 许兢, 应祎, 钱庆荣, 等. 废胶粉改性沥青研究与应用现状[J]. 再生资源与循环经济, 2014, 7(6): 41-44. doi: 10.3969/j.issn.1674-0912.2014.06.012 [6] 郭朝阳, 何兆益, 曹阳. 废胎胶粉改性沥青改性机理研究[J]. 中外公路, 2008, 28(2): 172-176. [7] ZHU J Q, BIRGISSON B, KRINGOS N. Polymer modification of bitumen: Advances and challenges[J]. European Polymer Journal, 2014, 54(1): 18-38. [8] 张文武. 废胎胶粉改性沥青机理研究[D]. 重庆: 重庆交通大学, 2009. [9] 于凯, 王欢, 韩赫兴, 等. 双氧水氧化废轮胎胶粉在改性沥青中的应用[J]. 天津大学学报(自然科学与工程技术版), 2014, 47: 949-954. [10] 于凯, 张琛, 王欢, 等. 次氯酸钠氧化废轮胎胶粉对改性沥青性能的影响[J]. 环境工程学报, 2016, 10(1): 350-354. doi: 10.12030/j.cjee.20160157 [11] SHATANAWI K M, BIRO S, NASER M, et al. Improving the rheological properties of crumb rubber modified binder using hydrogen peroxide[J]. Road Materials and Pavement Design, 2013, 14: 723-734. doi: 10.1080/14680629.2013.812535 [12] 胡吉良, 杜丹超, 李晓林, 等. 硫化胶粉与脱硫胶粉改性沥青性能研究[J]. 特种橡胶制品, 2014(5): 20-24. [13] 关庆文, 王仕峰, 张勇, 等. 脱硫胶粉改性沥青的研究[J]. 特种橡胶制品, 2009, 30(1): 28-30. doi: 10.3969/j.issn.1005-4030.2009.01.007 [14] 杜丹超, 李晓林, 郑广宇, 等. 脱硫胶粉改性沥青性能的研究[J]. 公路, 2012(6): 208-211. doi: 10.3969/j.issn.0451-0712.2012.12.049 [15] 康爱红. 活化废胶粉改性沥青机理研究[J]. 公路交通科技, 2008, 25(7): 12-16. doi: 10.3969/j.issn.1002-0268.2008.07.003 [16] FORMELA K, SULKOSKI M, SAEB M R, et al. Assessment of microstructure, physical and thermal properties of bitumen modified with LDPE/GTR/elastomer ternary blends[J]. Construction and Building Materials, 2016, 106: 160-167. doi: 10.1016/j.conbuildmat.2015.12.108 [17] XU O M, XIAO F P, HAN S, et al. High temperature rheological properties of crumb rubber modified asphalt binders with various modifiers[J]. Construction and Building Materials, 2016, 112: 49-58. doi: 10.1016/j.conbuildmat.2016.02.069 [18] ZHANG F, HU C B. The research for crumb rubber/waste plastic compound modified asphalt[J]. Journal of Thermal Analysis and Calorimetry, 2016, 124: 729-741. doi: 10.1007/s10973-015-5198-4 [19] FANG C Q, QIAO X T, YU R E, et al. Influence of modification process parameters on the properties of crumb rubber/EVA modified asphalt[J]. Journal of Applied Polymer Science, 2016, 133: 43598-43600. [20] YAN K Z, XU H B, YOU L Y. Rheological properties of asphalts modified by waste tire rubber and reclaimed low density polyethylene[J]. Construction and Building Materials, 2015, 83: 143-149. doi: 10.1016/j.conbuildmat.2015.02.092 [21] XU O M, CONG L, XIAO F P, et al. Rheology investigation of combined binders from various polymers with GTR under a short term aging process[J]. Construction and Building Materials, 2015, 93: 1012-1021. doi: 10.1016/j.conbuildmat.2015.05.051 [22] CAI G D, YANG H Y, ZHU L D, et al. Toughening polystyrene by core-shell grafting copolymer polybutadiene-graft-polystyrene with potassium persulfate as initiator[J]. Journal of Industrial and Engineering Chemistry, 2013, 19: 823-828. doi: 10.1016/j.jiec.2012.10.024 [23] WONGTHONG P, NAKASON C, PAN Q, et al. Modification of deproteinized natural rubber via grafting polymerization with maleic anhydride[J]. European Polymer Journal, 2013, 49: 4035-4046. doi: 10.1016/j.eurpolymj.2013.09.009 [24] SONGSING K, VATANATHAM T, HANSUPALLAK N. Kinetics and mechanism of grafting styrene onto natural rubber in emulsion polymerization using cumene hydroperoxide-tetraethylenepentamine as redox initiator[J]. European Polymer Journal, 2013, 49: 1007-1016. doi: 10.1016/j.eurpolymj.2013.01.027 [25] PENG C C, ABETZ V. A simple pathway toward quantitative modification of polybutadiene: A new approach to thermoreversible cross-linking rubber comprising supramolecular hydrogen-bonding networks[J]. Macromolecules, 2005, 38: 5575-5580. doi: 10.1021/ma050419f [26] RIYAJAN S A, SUKHLAAIED W. Effect of chitosan content on gel content of epoxized natural rubber grafted with chitosan in latex form[J]. Materials Science and Engineering C, 2013, 33: 1041-1047. doi: 10.1016/j.msec.2012.11.012 [27] SUKSAWAD P, YAMAMOTO Y, KAWAHARA S. Preparation of thermoplastic elastomer from natural rubber grafted with polystyrene[J]. European Polymer Journal, 2011, 47: 330-337. doi: 10.1016/j.eurpolymj.2010.11.018 [28] PUKKATE N, KITAI T, YAMAMOTO Y, et al. Nano-matrix structure formed by graft-copolymerization of styrene onto natural rubber[J]. European Polymer Journal, 2007, 43: 3208-3214. doi: 10.1016/j.eurpolymj.2007.04.037 [29] ASALETHA R, KUMARAN M G, THOMAS S. Thermal behaviour of natural rubber/polystyrene blends: Thermogravimetric and differential scanning calorimetric analysis[J]. Polymer Degradation and Stability, 1998, 61: 431-439. doi: 10.1016/S0141-3910(97)00229-2 [30] 唐晓红, 王瑾, 郑会勤, 等. 苯乙烯悬浮聚合的实验探索[J]. 化学与生物工程, 2012, 29(2): 44-45. doi: 10.3969/j.issn.1672-5425.2012.02.011