-
近年来,重工业污染和汽车尾气排放等主要因素导致我国中东部地区尤其是京津冀地区频现严重雾霾天气,使得工业园区和城市闹市区空气质量恶化,而雾霾所具有的相对湿度较大、悬浮颗粒细而多、成分复杂和风速微小几乎静风等特点,给生态环境和人们的日常生活带来了很深远的影响[1-2]。雾霾含有大量有毒有害物质,在空气中长期停留,被吸入人体,会危害身体健康[3-5],降低能见度,影响地面和航空的交通运输安全[6],增加了电网设备的负担,提高了污闪事故的发生概率,造成大规模停电和巨大的经济损失[7]。由此可见,雾霾对社会生产生活的严重破坏引发了强烈关注,给国民经济造成更加严重的损失,因此治理雾霾天气刻不容缓。
为探讨模拟雾霾环境的各粒径沉降效果,本实验的雾霾沉降速率需快于自然环境下的雾霾沉降速度,以提高效率。因此,人工模拟雾霾装置的搭建具有重要的现实意义。
一些研究人员[8-11]设计的模拟装置侧重于检验单一烟雾的光化学反应机理,此种装置较为简陋,费时费力。司马文霞等[12-13]设计的装置选择的模拟成分单一,未考虑水雾的影响。还有一些研究人员[14-15]搭建了大型雾霾模拟平台,但设备笨重且造价高昂。周羽生等[16]模拟了体积为15 000 m3的实验环境并给出了模拟雾霾自然沉降曲线图,但未深入研究不同雾霾环境的沉降特征。
基于此,本研究搭建了一套人工模拟雾霾装置用以模拟较为复杂的的雾霾环境,总结出各粒径颗粒物的粒径分布及衰减规律,模拟符合不同要求的雾霾环境,为雾霾治理提供稳定可控的环境条件,并提出了一种雾霾治理的新思路。
基于人工模拟雾霾装置的颗粒物沉降效果分析
Analysis of particle sedimentation effect based on artificial simulation haze-fog device
-
摘要: 雾霾对人类生活生产的影响日益严重,雾霾治理的研究逐渐受到重视,然而自然雾霾天气的不可预测性增加了研究难度。根据雾霾的组成特点,设计并搭建了一套人工模拟雾霾装置,对雾霾颗粒物的沉降效果进行浓度监测和分析。模拟结果表明:各种环境下,PM10的浓度和沉降速率最高,总浓度占比保持在40%以上,PM2.5浓度占比约为35%,PM1浓度最低,仅占20%~25%;有风环境下,颗粒物的沉降速度明显提高,当沉降时间达到130 min后,PM1的浓度达到20% 以下。装置成功模拟了100 min以上的重度雾霾以及20 min的中度雾霾,可为雾霾治理的研究提供稳定可控的实验环境。综合上述结果,将PM2.5和PM1凝结成PM10,可加速雾霾的消散,对雾霾治理具有重要参考价值。Abstract: The impact of haze-fog on human life and production is becoming increasingly serious, and researches have gradually been paid more attention to haze-fog management than before. However, the unpredictability of natural haze-fog weather will lead to the increase of difficulties in research. According to the composition characteristics of haze-fog, a set of artificial haze-fog simulation device was designed and built to monitor and analyze the concentration of haze-fog particles during their sedimentation process. The simulation results showed that the concentration and sedimentation rate of PM10 were the highest under various environments, its total concentration ratio maintained above 40%, the concentration ratio of PM2.5 was 35%, and the concentration of PM1 was the lowest, only accounting for 20% to 25%. In the windy environment, the sedimentation speed of the particulate matter increased significantly. After 130 min sedimentation, the concentration of PM1 was below 20%. The device successfully simulated severe haze with the duration of longer than 100 minutes and moderate haze with the duration of 20 minutes, which can provide a stable and controllable experimental environment for the research on haze-fog management. The analysis indicated that the condensation of PM2.5 and PM1 into PM10 can accelerate the haze-fog disappearance, which is of great significance to the haze-fog management.
-
表 1 单一水雾环境各粒径颗粒物浓度占比变化
Table 1. Variation of particle size concentration proportion in single spray environment
环境条件 各粒径颗粒物浓度占比/% 10 min 50 min 90 min 130 min PM1(CF)/PM2.5(CF)(无风扇) 75.15 80.38 78.72 73.52 PM1(CF)/PM10(CF)(无风扇) 70.31 73.41 74.00 70.21 PM2.5(CF)/PM10(CF)(无风扇) 93.56 91.33 94.00 93.45 PM1(自然)/PM2.5(自然)(无风扇) 74.77 80.00 79.03 73.32 PM1(自然)/PM10(自然)(无风扇) 70.04 73.04 74.24 56.16 PM2.5(自然)/PM10(自然)(无风扇) 93.67 91.30 93.94 76.84 PM1(CF)/PM2.5(CF)(有风扇) 47.75 63.57 74.26 76.06 PM1(CF)/PM10(CF)(有风扇) 39.36 55.00 67.37 71.05 PM2.5(CF)/PM10(CF)(有风扇) 82.43 86.52 90.72 93.42 PM1(自然)/PM2.5(自然)(有风扇) 47.67 63.42 74.13 75.53 PM1(自然)/PM10(自然)(有风扇) 39.28 54.77 67.12 71.00 PM2.5(自然)/PM10(自然)(有风扇) 82.40 86.36 90.54 94.00 表 2 单一霾颗粒物环境各粒径颗粒物浓度占比变化
Table 2. Variation of particle size concentration proportion in single haze particle environment
环境条件 各粒径颗粒物浓度占比/% 10 min 50 min 90 min 130 min PM1(CF)/PM2.5(CF)(无风扇) 28.22 48.87 50.94 54.10 PM1(CF)/PM10(CF)(无风扇) 13.60 30.86 33.96 43.42 PM2.5(CF)/PM10(CF)(无风扇) 48.19 63.14 66.67 80.26 PM1(自然)/PM2.5(自然)(无风扇) 28.01 48.30 50.00 59.52 PM1(自然)/PM10(自然)(无风扇) 13.49 30.60 33.02 43.10 PM2.5(自然)/PM10(自然)(无风扇) 48.17 63.36 66.04 72.41 PM1(CF)/PM2.5(CF)(有风扇) 45.03 68.00 71.23 75.64 PM1(CF)/PM10(CF)(有风扇) 29.00 47.22 71.43 74.68 PM2.5(CF)/PM10(CF)(有风扇) 64.40 69.44 94.63 97.44 PM1(自然)/PM2.5(自然)(有风扇) 44.86 68.00 71.43 76.51 PM1(自然)/PM10(自然)(有风扇) 28.83 47.22 71.43 75.92 PM2.5(自然)/PM10(自然)(有风扇) 64.26 69.44 94.52 95.46 表 3 混合雾霾环境的各粒径浓度占比的变化
Table 3. Variation chart of particle size concentration proportion in mixed haze-fog environment
环境条件 各粒径颗粒物浓度占比/% 10 min 50 min 90 min 130 min PM1(CF)/PM2.5(CF)(无风扇) 25.73 45.34 56.91 58.46 PM1(CF)/PM10(CF)(无风扇) 11.97 27.38 38.91 44.97 PM2.5(CF)/PM10(CF)(无风扇) 46.54 60.39 68.36 76.92 PM1(自然)/PM2.5(自然)(无风扇) 25.49 45.63 56.59 56.98 PM1(自然)/PM10(自然)(无风扇) 11.86 27.49 42.44 43.75 PM2.5(自然)/PM10(自然)(无风扇) 46.55 60.23 75.00 76.79 PM1(CF)/PM2.5(CF)(有风扇) 44.91 62.25 68.30 69.25 PM1(CF)/PM10(CF)(有风扇) 35.05 55.04 60.07 63.39 PM2.5(CF)/PM10(CF)(有风扇) 78.06 88.41 87.95 91.53 PM1(自然)/PM2.5(自然)(有风扇) 44.90 62.31 67.94 69.17 PM1(自然)/PM10(自然)(有风扇) 35.03 55.01 59.69 63.45 PM2.5(自然)/PM10(自然)(有风扇) 78.01 88.28 87.86 91.72 -
[1] 赵秀娟, 蒲维维, 孟伟. 北京地区秋季雾霾天PM2.5污染与气溶胶光学特征分析[J]. 环境科学, 2013, 34(2): 416-423. [2] 曹华伟, 梁旭东, 李青春. 北京一次持续性雾霾过程的阶段性特征及影响因子分析[J]. 气象学报, 2013, 71(5): 940-951. [3] CHARDON B, HOST S, PEDRONO G, et al. Contribution of case-crossover design to the analysis of shortterm health effects of air pollution: Reanalysis of air pollution and health data in French[J]. Epidemiology and Public Health, 2008, 56(1): 31-40. [4] JACOBS C, KELLY W J. Smogtown: The Lung-Burning History of Pollution in Los Angeles[M]. Los Angeles: Harry N. Abrams, 2008, 384. [5] 伊口田. 从“雾都”走向生态文明的伦敦[J]. 中国减灾, 2013(8): 22-24. [6] 陈晨, 赵紫英. 雾霾天气对交通运输影响的分析[J]. 科技视界, 2015(1): 206. [7] 朱明亮. 浅谈输电线路污闪事故诱因及防护措施[J]. 科技与企业, 2011(9): 123-124. [8] JEFFRIES H E, SEXTON K G, ARNOLD J, et al. Development of a standard chamber date base and protocol for evaluating oxidant mechanisms for urban and regional models[R]. University of North Carolina at Chapel Hill, 1990. [9] CARTER W P L, COCKER III D R, FITZ D R, et al. A new environmental chamber for evaluation of gas-phase chemical mechanisms and secondary aerosol formation[J]. Atmospheric Environment, 2005, 39(40): 7768-7788. doi: 10.1016/j.atmosenv.2005.08.040 [10] HALL J F, MAULDIN T P. Wind tunnel studies of the insulator contamination process[J]. IEEE Transactions on Electrical Insulation, 1981, 16(3): 180-188. [11] RAVELOMANANTSOA N, FARZANEH M, CHISHOLM W A. Laboratory investigation of the HV insulator contamination process under winter conditions[C]//2008 International Conference on High Voltage Engineering and Application, 2008: 116-119. [12] 司马文霞, 吴亮, 杨庆. 沙尘对电力系统外绝缘电气特性影响分析[J]. 高电压技术, 2008, 34(1): 16-21. [13] 司马文霞, 杨庆, 吴亮, 等. 平板模型沿面工频沙尘闪络特性的试验研究及放电机制分析[J]. 中国电机工程学报, 2010, 30(1): 6-13. [14] 王黎明, 刘动, 陈枫林, 等. 雾霾模拟方法及其装置研究[J]. 高电压技术, 2014, 40(11): 3297-3304. [15] 王建辉, 赵悦菊, 孙伟, 等. 人工模拟雾霾实验及其装置[J]. 环境工程学报, 2017, 11(9): 5130-5137. doi: 10.12030/j.cjee.201609073 [16] 周羽生, 罗屿, 赵纯, 等. 人工气候室雾霾模拟方法及装置[J]. 高电压技术, 2017, 43(3): 909-914. [17] 环境保护部, 国家质量监督检验检疫总局. 环境空气质量标准: GB 3095-2012[S]. 北京: 中国环境科学出版社, 2012. [18] 佚名. 国网河北电力编制《雾霾天气对输变电设备影响调研报告》[J]. 农电管理, 2014(1): 26. [19] 王晓彦, 李健军. 欧洲大气颗粒物标准及监测体系[J]. 中国环境监测, 2014, 30(6): 13-18. doi: 10.3969/j.issn.1002-6002.2014.06.002 [20] 骆灵喜, 林秋月, 王波. 低强度超声波处理微囊藻的生物效应研究[J]. 环境科学与技术, 2017, 40(10): 14-18. [21] 张小曳, 孙俊英, 王亚强, 等. 我国雾-霾成因及其治理的思考[J]. 科学通报, 2013, 58(13): 1178-1187. [22] 马思萌, 王丽涛, 魏哲, 等. 邯郸市PM2.5及其化学组分的季节性变化[J]. 环境工程学报, 2016, 10(7): 3743-3750. doi: 10.12030/j.cjee.201502068