-
我国畜牧养殖业的快速发展加剧了其与环境保护之间的矛盾[1-2]。畜牧养殖业产生的污染已经成为关键性的农业面源污染之一[3]。此外,磺胺类和β-内酰胺类抗生素因其具有使用方便、杀菌效果好、适用范围广等优点而被广泛应用于防治动物疾病[4-6]。2013年,我国使用了大约8.4×104 t以上的兽用抗生素[7]。抗生素仅少部分蓄存在动物体内或被完全分解,剩下的约30%~90%随粪便和尿液排出[8-10]。我国不同的畜禽养殖场的粪便及废水共检出28种不同种类抗生素[11],但养殖场中现有的废水处理设施对抗生素的去除效果极差[12]。近年来,细菌耐药性的传播对公众健康产生不良影响,引起了人们的广泛关注[13]。因此,亟需研发畜禽废水中的抗生素高效去除技术。
畜禽废水处理工艺大致可分为物理化学法、生物处理法以及兼顾不同技术的组合工艺。吸附[14-15]和Fenton氧化[16]等物理化学法对废水中的有机物及氮磷的去除效果较好,但成本较高。生物处理法具有处理效果好、运行成本低等优点。HUANG等[17]利用好氧生物反应器降解磺胺二甲嘧啶,最高可以得到80%的去除率;CHEN等[18]利用曝气生物滤池处理养猪场废水中的抗生素,部分抗生素的去除率高达70%~100%。因单一的厌氧或好氧工艺不能很好地去除废水中有机污染物和氨氮[19-21]。还有研究者采用组合工艺处理畜禽废水,如温飞[22]采用厌氧-好氧组合工艺处理畜禽废水,COD去除率大于85%,出水氨氮低于20 mg·L−1。
缺氧/好氧(A/O)系统运行经验丰富,且可通过反硝化补充部分碱度。本研究采用小试规模的A/O系统处理了低C/N奶牛场废水,详细考察了系统中常规污染物以及磺胺类和β-内酰胺类抗生素的处理效果,为奶牛场废水的处理提供有益的参考。
A/O系统处理低C/N奶牛场废水中的抗生素
Treatment of antibiotics in low C/N ratio dairy farm wastewater by anoxic-oxic system
-
摘要: 为处理奶牛场废水中常检出抗生素,考察了小试规模缺氧/好氧(A/O)系统对低C/N奶牛场废水中常规污染物和抗生素的处理效果。当进水COD、总氮、氨氮和总磷分别在1 242~4 350、830~1 367、818~1 291和6~12 mg·L−1,A池和O池水力停留时间(HRT)分别为3~4 d和2.05~5.4 d时,系统出水COD<400 mg·L−1、氨氮<10 mg·L−1、总氮去除率为40%~60%(无外加碳源)、总磷基本没有去除;通过调节硝化液回流比(1.0∶1~1.3∶1)可在进水COD/总氮≥3.1时实现碱度的自给自足;对11种磺胺类和8种β-内酰胺类抗生素研究发现,共检出9种磺胺类和1种β-内酰胺类抗生素(总浓度为5.89~17.31 μg·L−1),系统对抗生素的总去除率大于93%;先后2次向进水中人为添加8种磺胺类抗生素(每种浓度先后为50 μg·L−1和200 μg·L−1)不会影响系统运行的稳定性,且抗生素的总去除率大于90%,A池和O池的抗生素去除率分别为15.0%~34.2%和69.1%~91.4%;在O池中的HRT降低50%时,系统对抗生素的总去除率基本不变。除甲氧苄啶外,其余7种磺胺类抗生素主要在O池中均得到去除,这与其分子结构中的S—N键有关。以上结果对奶牛场废水处理后还田具有重要的参考价值。Abstract: Antibiotics are often detected in dairy farm wastewater. The treatment effects of conventional pollutants and antibiotics in low C/N ratio dairy farm wastewater were investigated by using a bench-scale anoxic-oxic(A/O) system. When the COD, total nitrogen(TN), ammonia nitrogen and total phosphorus(TP) in the influent were 1 242~4 350, 830~1 367, 818~1 291 and 6~12 mg·L−1, respectively, and the hydraulic retention times (HRTs) of anoxic and oxic reactor were 3~4 and 2.1~5.4 d, respectively, COD and ammonia nitrogen in the effluent of the system were less than 400 mg·L−1 and 10 mg·L−1, respectively, TN removal rate was 40%~60% (without additional carbon source), and TP was almost not removed. By adjusting the recycle ratio of nitrified liquor (1.0∶1~1.3∶1), the self-sufficiency of alkalinity could be realized when the COD/TN ratio of influent water was not less than 3.1. Based on the analysis of 11 kinds of sulfonamide and 8 kinds of β-lactam antibiotics in the wastewater, 9 sulfonamides and one β-lactam antibiotic were detected in the system (the total concentration was 5.89~17.31 μg·L−1), and the total removal efficiency of them was more than 93%. Adding 8 kinds of sulfonamide antibiotics to the influent twice (firstly 50 μg·L−1 for each antibiotics and secondly 200 μg·L−1 for each antibiotics) did not affect the stability of the system, and the total removal efficiency of antibiotics was more than 90%, and the removal rates of antibiotics in anoxic reactor and oxic reactor were 15.02%~34.23% and 69.1%~91.43%, respectively. Reducing the HRT of oxic reactor to 50% did not affect the antibiotics removal rate by the system. Except trimethoprim, the other 7 kinds of sulfonamide antibiotics were mainly removed in oxic reactor, which was related to the S-N bond in their molecular structures. The above results have important reference value for dairy farm wastewater treatment and returning to farmland.
-
Key words:
- dairy farm wastewater /
- antibiotics /
- A/O system /
- alkalinity
-
表 1 A/O系统主要材料与设备
Table 1. Main materials and equipment of the A/O system
名称 规格 数量 缺氧进水泵 Q=0.06~56 mL·min−1 1台 缺氧反应器 直径为0.13 m,总高为1.63 m 1个 硝化液回流泵 Q=0.06~56 mL·min−1 1台 水桶 30 L 3个 好氧进水泵 Q=0.06~56 mL·min−1 2台 好氧池 L=0.26 m,B=0.13 m,H=0.44 m 2个 二沉池 直径为0.12 m,直壁高为0.20 m 2个 污泥回流泵 Q=0.06~56 mL·min−1 2台 恒温水浴锅 0~99 ℃ 1个 表 2 A/O系统运行参数
Table 2. Operation parameters of the A/O system
阶段 时间/d C/N(COD/TN) HRT/d 水温/℃ 硝化液回流比 碱度添加 碳源添加 A池 O池 A池 O池 1 54~65 1.3~1.5 4 5.4 35±2 25±2 1.0∶1 否 否 2 66~97 3.1~3.5 4 5.4 35±2 25±2 1.0∶1 否 否 3 98~113 3.1~3.5 3 4.1 35±2 25±2 1.0∶1 否 否 4 114~130 3.1~3.5 3 4.1 35±2 25±2 1.0∶1 适量碳酸氢钠 否 5 131~165 3.1~3.5 3 4.1 常温 常温 1.3∶1 否 否 6 166~179 1.5~1.7 3 4.1 常温 常温 1.0∶1 适量碳酸氢钠 否 7 180~193 1.8~2.1 3 4.1 常温 常温 1.3∶1 适量碳酸氢钠 蔗糖 8 194~207 2.0~2.5 3 4.1 常温 常温 1.3∶1 否 醋酸钠 9 208~227 2.0~2.5 3 2.05 常温 常温 1.0∶1 否 醋酸钠 -
[1] 刘铭羽, 夏梦华, 李远航, 等. 3种基质材料对高浓度养殖废水处理效果及降解过程[J]. 环境科学, 2019, 40(8): 3650-3659. [2] 郑效旭, 李慧莉, 徐圣君, 等. SBR串联生物强化稳定塘处理养猪废水工艺优化[J/OL]. 环境工程学报: 1-13[2019-09-06]. http://kns.cnki.net/kcms/detail/11.5591.x.20190528.0918.002.html. [3] 白晓龙, 杨春和. 农村畜禽养殖废水处理技术现状与展望[J]. 中国资源综合利用, 2015, 33(6): 30-34. doi: 10.3969/j.issn.1008-9500.2015.06.018 [4] MARZO A, BO L D. Chromatography as an analytical tool for selected antibiotic classes: A reappraisal addressed to pharmacokinetic applications[J]. Journal of Chromatography A, 1998, 812(1/2): 17-34. [5] GAROMA T, UMAMAHESHWAR S K, MUMPER A. Removal of sulfadiazine, sulfamethizole, sulfamethoxazole, and sulfathiazole from aqueous solution by ozonation[J]. Chemosphere, 2010, 79(8): 814-820. doi: 10.1016/j.chemosphere.2010.02.060 [6] WILKE M S, LOVERING A L, STRYNADKA N C J. Beta-lactam antibiotic resistance: a current structural perspective[J]. Current Opinion in Microbiology, 2005, 8(5): 525-533. doi: 10.1016/j.mib.2005.08.016 [7] 梁忠. 抗生素52%为兽用[J]. 中国禽业导刊, 2015(12): 75. [8] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science and Technology, 2015, 49(11): 6772-6782. doi: 10.1021/acs.est.5b00729 [9] SARMAH A K, MEYER M T, BOXALL A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment[J]. Chemosphere, 2006, 65(5): 725-759. doi: 10.1016/j.chemosphere.2006.03.026 [10] 郑佳伦, 刘超翔, 刘琳, 等. 畜禽养殖业主要废弃物处理工艺消除抗生素研究进展[J]. 环境化学, 2017, 36(1): 37-47. doi: 10.7524/j.issn.0254-6108.2017.01.2016061402 [11] ZHOU L J, YING G G, LIU S, et al. Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China[J]. Science of the Total Environment, 2013, 444: 183-185. doi: 10.1016/j.scitotenv.2012.11.087 [12] ZHOU L J, YING G G, LIU S, et al. Use patterns, excretion masses and contamination profiles of antibiotics in a typical swine farm, south China[J]. Environmental Science Processes and Impacts, 2013, 15(4): 802-813. doi: 10.1039/c3em30682h [13] 陈雯, 张立平, 梁沛枫, 等. 某三级综合医院2017年度细菌耐药性监测分析[J]. 中华医院感染学杂志, 2019, 29(23): 3521-3525. [14] LIU C J, LI Y Z, LUAN Z K, et al. Adsorption removal of phosphate from aqueous solution by active red mud[J]. Journal of Environmental Sciences, 2007, 19(10): 1166-1170. doi: 10.1016/S1001-0742(07)60190-9 [15] 干方群, 徐子昊, 杨一帆, 等. 高岭土对畜禽废水中磷的净化效果及其费效分析[J]. 生态与农村环境学报, 2019, 35(6): 795-800. [16] KHAN J A, HE X X, SHAH S N, et a1. Degradation kinetics and mechanism of desethyl-atrazine and desisopropyl-atrazine in water with ·OH and $ {\rm{SO}}_4^{ \cdot - }$ based-AOPs[J]. Chemical Engineering Journal, 2017, 325: 485-494. doi: 10.1016/j.cej.2017.05.011[17] HUANG M H, TIAN S X, CHEN D H, et al. Removal of sulfamethazine antibiotics by aerobic sludge and an isolated Achromobacter sp. S-3[J]. Journal of Environmental Sciences, 2012, 24(9): 1594-1599. doi: 10.1016/S1001-0742(11)60973-X [18] CHEN J, LIU Y S, ZHANG J N, et al. Removal of antibiotics from piggery wastewater by biological aerated filter system: Treatment efficiency and biodegradation kinetics[J]. Bioresource Technology, 2017, 238: 70-77. doi: 10.1016/j.biortech.2017.04.023 [19] 唐凯. 国内畜禽养殖废水处理技术的研究进展[J]. 应用化工, 2018, 47(10): 2274-2278. doi: 10.3969/j.issn.1671-3206.2018.10.052 [20] 操奕. USR-两级A/O组合工艺处理奶牛场废水应用研究[D]. 合肥: 合肥工业大学, 2014. [21] 李珊珊. 物化-生化组合工艺处理完达山奶牛场废水的实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. [22] 温飞. 折流厌氧-好氧组合处理畜禽养殖废水现场试验研究[D]. 杭州: 浙江工业大学, 2017. [23] 金要勇, 孟海玲, 刘再亮, 等. 奶牛养殖废水厌氧出水的吹脱混凝处理试验研究[J]. 农业环境科学学报, 2015, 34(2): 384-390. doi: 10.11654/jaes.2015.02.024 [24] 韩跃飞. 养猪场废水中抗生素去除技术研究[D]. 上海: 华东理工大学, 2019. [25] LI D, YANG M, HU J Y, et al. Determination of penicillin G and its degradation products in a penicillin production wastewater treatment plant and the receiving river[J]. Water Research, 2008, 42(1/2): 307-317. [26] KEMPER N. Veterinary antibiotics in the aquatic and terrestrial environment[J]. Ecological Indicators, 2008, 8(1): 1-13. doi: 10.1016/j.ecolind.2007.06.002 [27] LI B, ZHANG T. Biodegradation and adsorption of antibiotics in the activated sludge process[J]. Environmental Science and Technology, 2010, 44(9): 3468-3473. doi: 10.1021/es903490h [28] ZHAO W T, SUI Q, MEI X B, et al. Efficient elimination of sulfonamides by an anaerobic/anoxic/oxic-membrane bioreactor process: Performance and influence of redox condition[J]. Science of the Total Environment, 2018, 633: 668-676. doi: 10.1016/j.scitotenv.2018.03.207 [29] YANG S F, LIN C F, LIN A Y C, et al. Sorption and biodegradation of sulfonamide antibiotics by activated sludge: Experimental assessment using batch data obtained under aerobic conditions[J]. Water Research, 2011, 45(11): 3389-3397. doi: 10.1016/j.watres.2011.03.052 [30] MULLERA E, SCHUSSLER W, HORN H, et al. Aerobic biodegradation of the sulfonamide antibiotic sulfamethoxazole by activated sludge applied as co-substrate and sole carbon and nitrogen source[J]. Chemosphere, 2013, 92(8): 969-978. doi: 10.1016/j.chemosphere.2013.02.070 [31] BATT A L, KIM S, AGA D S. Enhanced biodegradation of iopromide and trimethoprim in nitrifying activated sludge[J]. Environmental Science and Technology, 2006, 40(23): 7367-7373. doi: 10.1021/es060835v [32] FERNANDEZ-FONTAINA E, GOMES I B, AGA D S, et al. Biotransformation of pharmaceuticals under nitrification, nitratation and heterotrophic conditions[J]. Science of the Total Environment, 2016, 541: 1439-1447. doi: 10.1016/j.scitotenv.2015.10.010