-
土壤重金属污染已成为我国亟需解决的环境问题。而重金属污染场地是我国污染场地数量最多、污染最严重的一类。在我国西南和中南地区,重金属污染场地具有污染浓度高、污染分布不均等特点[1]。2014年,据《全国土壤污染状况调查公报》[2]和《土地整治蓝皮书》[3]统计,全国土壤污染物超标率总数达到了16.1%,其中铬污染点位超标率为1.1%。
铬在土壤中主要以Cr(Ⅲ)和Cr(Ⅵ) 2种价态存在[4],Cr(Ⅵ)是国际公认的3大致癌金属物之一[5-6]。目前,我国每年新增铬渣及副产物量达数十万t[7],受处理成本和技术条件限制,大部分铬渣露天堆放,污染物随风扩散或经雨水淋溶和浸滤,造成严重的土壤铬污染。
土壤淋洗技术工艺简单、修复效率高、处理方量大,已逐渐成为许多规模较大的现场修复示范项目首选技术,可用于高浓度Cr(Ⅵ)污染土壤,具有永久去除Cr(Ⅵ)[8]和经济高效等特点[9],常用草酸、柠檬酸、乙酸、二乙基三胺五乙酸(DTPA)、乙二胺四乙酸(EDTA)和乙二胺二琥珀酸(EDDS)等作为淋洗剂[9-13]。目前,关于土壤淋洗修复Cr(Ⅵ)污染土壤的研究主要集中于淋洗剂的比选和优化淋洗参数等方面,且基本处于实验室层面。由于未考虑修复粒级>2 mm的土壤,因此,在实际修复工程中,不能全面评价Cr(Ⅵ)污染土壤的修复效果[14]。目前评价修复效果大多局限于去除率的研究,有关修复后土壤残留Cr(Ⅵ)含量和Cr(Ⅵ)的淋洗机理研究还鲜有报道。本研究根据土壤淋洗应用的可行性,针对重庆市某工业废弃地Cr(Ⅵ)污染土壤,将土壤粒级分为>2 mm和<2 mm,探究组合淋洗对Cr(Ⅵ)污染土壤的修复能力,同时采用SEM-EDS和XRD分析对淋洗前后土壤进行表征,分析组合淋洗剂对土壤中Cr(Ⅵ)的去除机制,为该类污染土壤的修复提供参考。
天然有机酸和DTPA组合工艺对Cr(Ⅵ)污染土壤的淋洗修复
Washing remediation of Cr(Ⅵ) contaminated soil by the combination process of natural organic acids and DTPA
-
摘要: 针对重庆市某工业废弃地Cr(Ⅵ)污染土壤,分别采用不同浓度草酸、柠檬酸、乙酸组合二乙基三胺五乙酸(DTPA)对其进行淋洗处理,结合XRD和SEM-EDS电镜扫描分析,探究组合淋洗剂对土壤Cr(Ⅵ)残留量和淋洗机理的影响。结果表明:有机酸单一淋洗优劣顺序为草酸>柠檬酸>乙酸(P<0.05),DTPA在5 g·L−1时达到最大淋洗量;组合淋洗顺序对Cr(Ⅵ)去除率具有显著影响(P<0.05),5 g·L−1 DTPA与0.2 mol·L−1草酸顺序淋洗在液固比10∶1、淋洗60 min时效果最佳,粒级>2 mm和粒级<2 mm土壤Cr(Ⅵ)残留含量分别为35.42和45.57 mg·kg−1,去除率达到89.20%和86.99%。ExpDec1、Elovich和双常数模型均适用于Cr(Ⅵ)淋洗动力学过程(R2>0.98)。经组合淋洗后,土壤表面Cr元素含量减少,且未检出Cr(Ⅵ)化合物,矿物学形态变化明显。草酸和DTPA组合顺序淋洗可作为较好的复配淋洗剂,该研究结果可为异位淋洗修复Cr(Ⅵ)污染土壤的实际应用提供参考。Abstract: Different concentrations of oxalic acid, citric acid and acetic acid combined with diethylene triamine pentacetate acid (DTPA) were used as eluents to wash the hexavalent chromium (Cr(Ⅵ)) contaminated soil in the derelict industrial land of Chongqing, respectively. Being combined with the analysis of diffraction of X-rays(XRD) and scanning electron microscope-energy dispersive spectrometer (SEM-EDS), the effects of different eluents on the residual amounts of Cr(Ⅵ) and washing mechanisms were studied. The results showed that the order of organic acid alone washing was oxalic acid > citric acid > acetic acid (P<0.05), and the highest washing amount of Cr(Ⅵ) occurred at 5 g·L−1 DTPA. The sequence of combined eluents had a significant effect on removal rate for Cr(Ⅵ) (P<0.05), the best effect occurred for a 60 min-sequential washing by 5 g·L−1 DTPA and 0.2 mol·L−1 oxalic acid combination at a liquid to solid ratio of 10∶1. The residual amounts of Cr(Ⅵ) in soils with particle size larger than 2 mm and with particle size lower than 2 mm were 35.42 mg·kg−1 and 45.57 mg·kg−1, and the corresponding removal rates were 89.20% and 86.99%, respectively. The kinetic of washing can be fitted by ExpDec1, Elovich and Double constant models (R2>0.98). After combined washing, the content of Cr element in the soil surface decreased, Cr(Ⅵ) compound was not detected, while significant change occurred in the mineralogical morphology of surface soil. Accordingly, the sequential washing of oxalic acid and DTPA combination is an optimal combined eluent, this result can provide reference for practical application of ex-situ washing and remediation of Cr(Ⅵ)-contaminated soil.
-
表 1 供试土壤理化性质
Table 1. Physical and chemical properties of experimental soil
土壤样品 土壤质地 颗粒百分比/% pH 含水率/% 有机质/% CEC/
(cmol·kg−1)总Cr/
(mg·kg−1)Cr(Ⅵ)/
(mg·kg−1)砂粒 粉粒 黏粒 原土 壤质砂土 68.73 16.02 15.25 8.30 22.51 12.09 13.93 5 288.00 337.10 粒级>2 mm 砂砾 100 — — 8.02 18.73 11.29 13.49 3 259.50 328.12 粒级<2 mm 砂质粉土 53.28 29.14 17.18 8.68 26.43 9.77 13.93 5 665.00 350.24 表 2 顺序淋洗实验参数条件
Table 2. Conditions for combined washing parameters
编号 先加有机酸,后加DTPA(顺序淋洗) 编号 先加DTPA,后加有机酸(顺序淋洗) 有机酸 DTPA DTPA 有机酸 类型 浓度/(mol·L−1) 时间/min 浓度/(g·L−1) 时间/min 浓度/(g·L−1) 时间/min 类型 浓度/(mol·L−1) 时间/min S1 草酸 0.1 30 5 30 S7 5 30 草酸 0.1 30 S2 柠檬酸 0.1 30 5 30 S8 5 30 柠檬酸 0.1 30 S3 乙酸 0.1 30 5 30 S9 5 30 乙酸 0.1 30 S4 草酸 0.2 30 5 30 S10 5 30 草酸 0.2 30 S5 柠檬酸 0.2 30 5 30 S11 5 30 柠檬酸 0.2 30 S6 乙酸 0.2 30 5 30 S12 5 30 乙酸 0.2 30 表 3 混合淋洗实验参数条件
Table 3. Conditions for mixed washing parameters
编号 有机酸 DTPA浓度/
(g·L−1)时间/
min类型 浓度/(mol·L−1) H1 草酸 0.1 5 60 H2 柠檬酸 0.1 5 60 H3 乙酸 0.1 5 60 H4 草酸 0.2 5 60 H5 柠檬酸 0.2 5 60 H6 乙酸 0.2 5 60 表 4 土壤Cr(Ⅵ)淋洗动力学拟合参数
Table 4. Fitting parameters of washing kinetics of soil Cr (Ⅵ)
土壤粒级/mm 双常数模型lnS=Alnt+B Elovich模型S=Alnt+B ExpDec1模型S= $ {A_1}{{\rm{e}}^{\left( {\tfrac{{ - t}}{{{t_1}}}} \right)}} + {y_0}$ R2 标准误差 R2 标准误差 R2 标准误差 >2 0.984 7 2.054 5 0.985 3 4.461 8 0.995 9 1.253 5 <2 0.985 4 6.806 1 0.987 1 6.003 9 0.997 8 1.046 1 注:模型拟合用R2和标准误差来衡量,R2越大,标准误差越小,该模型越优。 表 5 淋洗前后土壤Cr含量变化
Table 5. Comparison of soil Cr before and after washing
土壤样品 土壤粒级/
mm总Cr/
(mg·kg−1)Cr(Ⅲ)/
(mg·kg−1)Cr(Ⅵ)/
(mg·kg−1)pH 未淋洗土壤 >2 3 259.50 2 931.38 328.12 8.02 <2 5 665.00 5 314.76 350.24 8.68 淋洗后土壤 >2 1 760.50 1 725.08 35.42 3.91 <2 2 230.75 2 185.18 45.57 4.54 -
[1] 王艳伟, 李书鹏, 康绍果, 等. 中国工业污染场地修复发展状况分析[J]. 环境工程, 2017, 35(10): 175-178. [2] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[EB/OL]. [2019-11-01]. http://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670.htm, 2014. [3] 国土资源部土地整治中心. 土地整治蓝皮书[M]. 北京: 社会科学文献出版社, 2014. [4] HU L G, CAI Y, JIANG G B. Occurrence and speciation of polymeric chromium (III), monomeric chromium (III) and chromium (Ⅵ) in environmental samples[J]. Chemosphere, 2016, 156: 14-20. doi: 10.1016/j.chemosphere.2016.04.100 [5] HOPKINS J. IARC monographs on the evaluation of carcinogenic risks to humans: Volume 49. Chromium, nickel and welding[J]. Food & Chemical Toxicology, 1991, 29(9): 647-648. [6] ADAM V, QUARANTA G, LOYAUX-LAWNICZAK S. Terrestrial and aquatic ecotoxicity assessment of Cr(Ⅵ) by the ReCiPe method calculation (LCIA): Application on an old industrial contaminated site[J]. Environmental Science and Pollution Research, 2013, 20(5): 3312-3321. doi: 10.1007/s11356-012-1254-9 [7] 环境保护部, 发展改革委, 工业信息化部, 等. “十二五”危险废物污染防治规划[EB/OL]. [2019-11-01]. http://www.mee.gov.cn/gkml/hbb/bwj/201210/t20121023_240228.htm, 2012. [8] 刘仕业, 岳昌盛, 彭犇, 等. 铬污染毒性土壤清洁修复研究进展与综合评价[J]. 工程科学学报, 2018, 40(11): 1275-1287. [9] DI PALMA L, MANCINI D, PETRUCCI E. Experimental assessment of chromium mobilization from polluted soil by washing[J]. Chemical Engineering Journal, 2012, 28: 145-50. [10] JEAN L, BORDAS F, GAUTIER-MOUSSARD C, et al. Effect of citric acid and EDTA on chromium and nickel uptake and translocation by Datura innoxia[J]. Environmental Pollution, 2008, 153(3): 555-563. doi: 10.1016/j.envpol.2007.09.013 [11] 黄川, 李柳, 黄珊, 等. 重金属污染土壤的草酸和EDTA混合淋洗研究[J]. 环境工程学报, 2014, 8(8): 3480-3486. [12] 陈欣园, 仵彦卿. 不同化学淋洗剂对复合重金属污染土壤的修复机理[J]. 环境工程学报, 2018, 12(10): 2845-2854. doi: 10.12030/j.cjee.201804192 [13] DARKO H, TATJANA D, RUZICA S, et al. Leaching of chromium from chromium contaminated soil: Speciation study and geochemical modeling[J]. Journal of the Serbian Chemical Society, 2012, 77(1): 119-129. doi: 10.2298/JSC101216154A [14] 朱文会, 王夏晖, 何军, 等. 基于粒径分布的不同异位修复工艺除Cr特性[J]. 环境工程学报, 2018, 12(6): 1783-1790. doi: 10.12030/j.cjee.201712091 [15] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. [16] USEPA. Method 3060A alkaline digestion for hexavalent chromium[S]. Washington DC: United States Environmental Protection Agency, 1996. [17] USEPA. Method 7196A chromium, hexavalent(colorimetric)[S]. Washington DC: United States Environmental Protection Agency, 1992. [18] 生态环境部. 土壤和沉积物铜、锌、铅、镍、铬的测定火焰原子吸收分光光度计: HJ 491-2019[S]. 北京: 中国环境科学出版社, 2019. [19] 王海豹, 李曼, 戴利, 等. 铬渣污染土壤的淋洗法修复[J]. 齐鲁工业大学学报(自然科学版), 2014, 28(4): 59-63. [20] 陶冶. 镉铬污染土壤淋洗剂筛选研究[D]. 长沙: 中南大学, 2013. [21] 陈杰. 有机酸淋洗法和固化稳定化法修复重金属污染土壤研究[D]. 杭州: 浙江大学, 2015. [22] 李玉双, 胡晓钧, 宋雪英, 等. 柠檬酸对重金属复合污染土壤的淋洗修复效果与机理[J]. 沈阳大学学报(自然科学版), 2012, 24(2): 6-9. [23] TANDY S, BOSSART K, MUELLER R, et al. Extraction of heavy metals from soils using biodegradable chelating agents[J]. Environmental Science & Technology, 2004, 38(3): 937-944. [24] GÜÇLÜ K, APAK R. Modeling the adsorption of free and heavy metal complex-bound EDTA onto red mud by a nonelectrostatic surface complexation model[J]. Journal of Colloid and Interface Science, 2003, 260(2): 280-290. doi: 10.1016/S0021-9797(03)00045-6 [25] 胡静. 铬污染土壤电化学淋洗还原修复实验研究[D]. 重庆: 重庆大学, 2017. [26] 许端平, 李晓波, 孙璐. 有机酸对土壤中Pb和Cd淋洗动力学特征及去除机理[J]. 安全与环境学报, 2015, 15(3): 261-266. [27] 王曲漪, 丁竹红, 胡忻, 等. EDTA对污染土壤水稳团聚体Cu、Zn、Pb的解吸作用[J]. 农业环境科学学报, 2012, 31(7): 1324-1329. [28] ZHANG T T, XUE Q, WEI M L. Leach ability and stability of hexavalent-chromium-contaminated soil stabilized by ferrous sulfate and calcium polysulfide[J]. Applied Sciences, 2018, 8(9): 1431. doi: 10.3390/app8091431 [29] BEGUM Z A, RAHMAN I M M, SAWAI H, et al. Effect of extraction variables on the biodegradable chelant-assisted removal of toxic metals from artificially contaminated European reference soils[J]. Water, Air & Soil Pollution, 2013, 224(3): 1381. [30] LIAO Y P, MIN X B, YANG Z H, et al. Physicochemical and biological quality of soil in hexavalent chromium-contaminated soils as affected by chemical and microbial remediation[J]. Environmental Science and Pollution Research, 2014, 21(1): 379-388. doi: 10.1007/s11356-013-1919-z [31] 李玉姣, 温雅, 郭倩楠, 等. 有机酸和FeCl3复合浸提修复Cd、Pb污染农田土壤的研究[J]. 农业环境科学学报, 2014, 33(12): 2335-2342. doi: 10.11654/jaes.2014.12.009 [32] DERMONT G, BERGERON M, MERCIER G, et al. Soil washing for metal removal: A review of physical/chemical technologies and field applications[J]. Journal of Hazardous Materials, 2008, 152(1): 1-31. doi: 10.1016/j.jhazmat.2007.10.043 [33] GUO X F, WEI Z B, WU Q T, et al. Effect of soil washing with only chelators or combining with ferric chloride on soil heavy metal removal and phytoavailability: Field experiments[J]. Chemosphere, 2016, 147: 412-419. doi: 10.1016/j.chemosphere.2015.12.087 [34] CERQUEIRA B, ARENAS-LAGO D, ANDRADE M L, et al. Using time of flight secondary ion mass spectrometry and field emission scanning electron microscopy with energy dispersive X-ray spectroscopy to determine the role of soil components in competitive copper and cadmium migration and fixation in soils[J]. Geoderma, 2015, 251: 65-77. [35] GALAN E, CARRETERO M I, FERNANDEZ-CALIANI J C. Effects of acid mine drainage on clay minerals suspended in the Tinto River (Rio Tinto, Spain). An experimental approach[J]. Clay Minerals, 1999, 34(1): 99-108. doi: 10.1180/000985599546118 [36] SREERAM K J, TIWARI M K, RAMASAMI T. Some studies on recovery of chromium from chromite ore processing residues[J]. Indian Journal of Chemistry, 2003, 42A: 2447-2454. [37] HILLIER S, LUMSDON D G, BRYDSON R, et al. Hydrogarnet: A host phase for Cr (VI) in chromite ore processing residue (COPR) and other high pH wastes[J]. Environmental Science & Technology, 2007, 41(6): 1921-1927. [38] ZHOU X, ZHOU M, WU X, et al. Reductive solidification/stabilization of chromate in municipal solid waste incineration fly ash by ascorbic acid and blast furnace slag[J]. Chemosphere, 2017, 182: 76-84. doi: 10.1016/j.chemosphere.2017.04.072