-
石油的勘探、储存、运输以及提炼过程中会导致一系列土壤石油污染问题。石油烃进入土壤后,会破坏土壤的颗粒结构,影响其通气性[1],影响土壤中微生物及农作物的生长[2];而且,石油烃进入食物链后会对人体产生不可逆性的致癌、致畸、致突变的三致作用[3]。2014年《全国土壤污染调查公报》[4]表明,13个采油区的494个土壤点位中,石油烃及多环芳烃超标率高达23.6%,治理石油烃污染土壤刻不容缓。
石油烃主要由饱和烃(如正构烷烃,异构烷烃和环烷烃等),以及不饱和烃(如多环芳烃)和少量的含硫氮氧的杂原子化合物等组成[5-7]。国际上将总石油烃(TPHs)分为挥发性石油烃(VPHs)(含碳原子数为C6~C9);以及可萃取性石油烃(EPHs)(含碳原子数为C10~C40[8-9])。我国在2018年发布的《土壤环境质量 建设用地土壤污染风险管控标准》(GB 36600-2018)[10]中,首次新增了石油烃类(C10~C40)污染物项目,但该标准以及相应的检测方法只能表征土壤石油烃总量,而对石油烃的类别、来源及毒性当量的管控存在很大的空白,从而导致土壤修复标准研究落后于修复技术[11]。因此,在修复过程中,对石油烃中不同来源的组分进行更细致的分段研究是十分必要的。
基于处理污染物范围广、适用性强、修复周期短、去除效率高等优点,热脱附法目前已经受到了土壤修复从业者的密切关注[12-13]。热脱附技术是在通入载气的情况下,通过在特定的设备中进行直接或间接的热交换,将土壤固相中有机污染物加热至足够高的温度,使其从土壤介质转移到气相进行分离,温度通常高于100 ℃低于600 ℃[14]。目前,欧美国家已实现土壤热脱附技术的大规模商业化和工程化;而我国则处于起步阶段,并且目前大部分研究主要集中于多环芳烃(PAHs)、多氯联苯(PCBs)、有机氯农药(OCPs)等污染物[15-17],关于石油污染土壤热脱附的研究较少。
本研究以石油烃为目标污染物,根据含碳量的不同,将可萃取性石油烃分为5个组分进行了分段研究;探讨了热脱附过程中,污染物浓度以及载气含氧量对热脱附效果的影响,为热脱附技术用于修复石油污染场地的实际应用提供参考。
载气含氧量及污染物浓度对土壤石油烃热脱附效率的影响
Effect of oxygen content of carrier gas and contaminant concentration on ex-situ thermal desorption efficiency of extractable petroleum hydrocarbon in soil
-
摘要: 石油烃(TPHs)在土壤中难以降解,并具有生物毒性,异位热脱附(ESTD)在修复石油烃污染土壤方面极具应用潜力。采用实验室模拟异位热脱附装置,研究了热脱附载气含氧量及土壤石油烃污染浓度对可萃取石油烃(EPHs)中柴油段(DRO)和重油段(ORO)的5种组分去除率的影响。结果表明:在初始浓度为5 000~20 000 mg·kg−1时,在20 min内的脱附率均不超过50%;当初始浓度增加到40 000 mg·kg−1、脱附时间为20 min时脱附率可以达到68.2%。热脱附时间为50 min时,40 000 mg·kg−1污染土壤的残余浓度为407.1 mg·kg−1。DOR组分相同时间的脱附率随污染浓度的升高而升高,ORO组分在50 min之内不能完全脱附,脱附率随着污染物浓度上升会出现先增大后减小的趋势。在250 ℃时,DRO中3个组分的去除率均随着气氛含氧量的增加而呈现明显的增长趋势。在400 ℃条件下,ORO中2个组分分别在含氧量为12%和15%时达到最高的去除率。本研究结果可为ESTD技术修复不同浓度的石油烃污染土壤的工程设计参数提供参考。Abstract: Total petroleum hydrocarbons (TPHs) are biotoxic and difficult to degrade in soil. Ex-situ thermal desorption (ESTD) has an excellent potential for petroleum hydrocarbon contaminated soil remediation. Based on the laboratory simulated ex-situ thermal desorption device, the effects of oxygen content of carrier gas and petroleum hydrocarbon pollution concentration in thermal desorption treatment on the removal efficiencies of the five fractions of diesel range organics (DRO) and oil range organics (ORO) in extractable petroleum hydrocarbons (EPHs) were studied. The results showed that the desorption efficiency did not exceed 50% in 20 min at the initial concentration of 5 000~20 000 mg·kg−1, and the desorption efficiency could reach 68.2% at 20 min when the initial concentration increased to 40 000 mg·kg−1. The residual concentration of 40 000 mg·kg−1 contaminated soil was 407.1 mg·kg−1 at 50 min-thermal desorption treatment. The desorption efficiencies of DOR fractions at the same time increased with the increase of contaminant concentrations. The ORO components could not be desorbed entirely within 50 min, and the desorption efficiency increased first and then decreased with the increase of contaminant concentration. The removal rates of the three DRO components showed a significant growth trend with the increase of oxygen content in the atmosphere at 250 °C. The two ORO components achieved their highest removal efficiencies at 12% and 15% oxygen content at 400 °C, respectively. The experimental results can provide reference for the engineering design parameters of ESTD technology to remediate the contaminated soil with petroleum hydrocarbons at different concentrations.
-
-
[1] 陆秀君, 郭书海, 孙清, 等. 石油污染土壤的修复技术研究现状及展望[J]. 沈阳农业大学学报, 2003, 58(1): 63-67. doi: 10.3969/j.issn.1000-1700.2003.01.018 [2] 李杨, 李凡修. 石油污染土壤的微生物修复技术[J]. 化工环保, 2017, 37(6): 605-610. doi: 10.3969/j.issn.1006-1878.2017.06.001 [3] 张学佳, 纪巍, 康志军, 等. 石油类污染物对土壤生态环境的危害[J]. 化工科技, 2008, 17(6): 63-68. [4] 程小谷, 张展毅, 章生卫, 等. 土壤修复产业链的发展现状、存在问题及发展前景浅析[J]. 广州环境科学, 2016, 32(1): 1-5. [5] 齐永强, 王红旗, 刘敬奇, 等. 土壤中石油污染物微生物降解过程中各石油烃组分的演变规律[J]. 环境科学学报, 2003, 23(6): 834-836. doi: 10.3321/j.issn:0253-2468.2003.06.026 [6] 黄宁选, 马宏瑞, 王晓蓉, 等. 环境中石油烃污染物组分的气相色谱分析[J]. 陕西科技大学学报(自然科学版), 2003, 22(6): 25-29. [7] 卜庆伟, 王亮, 张枝焕, 等. 天津地区表层土中饱和烃的组成与分布特征[J]. 生态环境, 2007, 16(2): 36-44. [8] BOON K A, RAMSEY M H. Judging the fitness of on-site measurements by their uncertainty, including the contribution from sampling[J]. Science of the Total Environment, 2012, 419(3): 196-207. [9] PARK I S, PARK J W. A novel total petroleum hydrocarbon fractionation strategy for human health risk assessment for petroleum hydrocarbon-contaminated site management[J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 1128-1135. [10] 周裕涵, 刘洋. 我国土壤质量相关标准规范现状[J]. 能源与环境, 2018, 37(2): 12-13. doi: 10.3969/j.issn.1672-9064.2018.02.005 [11] 徐应明. 污染土壤修复、诊断与标准体系建立的探讨[J]. 农业环境科学学报, 2007, 26(2): 413-418. doi: 10.3321/j.issn:1672-2043.2007.02.002 [12] MERINO J, BUCALA V. Effect of temperature on the release of hexadecane from soil by thermal treatment[J]. Journal of Hazardous Materials, 2007, 143(1): 455-461. [13] 王瑛, 李扬, 黄启飞, 等. 温度和停留时间对DDT污染土壤热脱附效果的影响[J]. 环境工程, 2012, 30(1): 116-120. [14] 白四红, 陈彤, 祁志福, 等. 载气流量及升温速率对污染土壤中多氯联苯热脱附的影响[J]. 化工学报, 2014, 65(6): 2256-2263. doi: 10.3969/j.issn.0438-1157.2014.06.041 [15] DOUGLAS G S, HARDENSTINE J H, LIU B, et al. Laboratory and field verification of a method to estimate the extent of petroleum biodegradation in soil[J]. Environmental Science & Technology, 2012, 46(15): 8279-8287. [16] 刘洁, 赵中华, 李晓东, 等. 两种改性剂对多氯联苯污染土壤协同热脱附影响研究[J]. 生态毒理学报, 2016, 10(2): 636-641. [17] FALCIGLIA P P, GUIDI G D, CATALFO A, et al. Remediation of soils contaminated with PAHs and nitro-PAHs using microwave irradiation[J]. Chemical Engineering Journal, 2016, 296(7): 162-172. [18] 梁迪思, 陈飞龙, 郭杰煌, 等. 对土壤中总石油烃检测分析方法的探讨[J]. 化工管理, 2020, 27(8): 56-57. [19] GAO Y F, YANG H, ZHAN X H, et al. Scavenging of BHCs and DDTs from soil by thermal desorption and solvent washing[J]. Environmental Science and Pollution Research, 2013, 20(3): 1482-1492. doi: 10.1007/s11356-012-0991-0 [20] LI D C, XU W F, MU Y, et al. Crittenden, remediation of petroleum-contaminated soil and simultaneous recovery of oil by fast pyrolysis[J]. Environmental Science & Technology, 2018, 52(9): 5330-5338. [21] 张攀, 高彦征, 孔火良. 污染土壤中硝基苯热脱附研究[J]. 土壤, 2012, 55(5): 99-104. [22] 汤艳峰, 郭喜伟. 建设用地污染地块土壤环境风险管控探讨与研究[J]. 绿色环保建材, 2019, 6(10): 226-228. [23] 骆永明. 污染土壤修复技术研究现状与趋势[J]. 化学进展, 2009, 21(2): 558-565. [24] ZHAO M, LIU D, LI Z H, et al. Inspection for desorption behavior and desorption mechanism of oily sludge by thermodynamics and kinetics analysis[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93(12): 226-233. [25] 李扬, 王瑛, 黄启飞, 等. 气氛含氧量对DDT热处理特性的影响[J]. 环境工程学报, 2012, 6(3): 353-358. [26] LEE W J, SHIH S I, CHANG C Y, et al. Thermal treatment of polychlorinated dibenzo-p-dioxins and dibenzofurans from contaminated soils[J]. Journal of Hazardous Materials, 2008, 160(1): 220-227. doi: 10.1016/j.jhazmat.2008.02.113