-
3,4-二氯硝基苯广泛应用于工业化学和医药等领域。由于3,4-二氯硝基苯具有一定毒性,对生态环境安全具有潜在风险,因而去除水环境中3,4-二氯硝基苯污染物研究受到了众多学者的关注。3,4-二氯硝基苯可以被光催化降解为CO2、H2O,也可以被催化还原为芳香胺即3,4-二氯苯胺[1]。3,4-二氯苯胺是一种重要的精细化工中间体,在偶氮染料、药品、塑料、农药、纺织印染、阻燃剂等化学工业中被广泛应用[2]。3,4-二氯苯胺的传统制备方法包括贝尚反应、加氢还原法和铁粉还原法[3]。上述反应需要在高温、高压等操作条件下进行,需要较高的生产条件并具有潜在的污染风险和安全隐患[4],因此需要探索常温、常压的清洁生产方法。光催化还原法是一种有效降解有机污染物的绿色方法,具有成本低、安全高效、原子利用率高、几乎不产生副产品等优点,已成为光催化领域备受关注的热点问题。据文献报道,目前光催化技术可处理3 000多种污染水体[5-7]。在室温下,通过二氧化钛(TiO2)光催化氧化可降解绝大多数有机污染物[8];而添加空穴清除剂时,TiO2又可将有机硝基化合物光催化还原为相应的芳香胺[9]。通过掺杂金属[10]或非金属元素[11-12],或以石墨烯、碳纳米管、分子筛作为载体等方法改性TiO2[13-14],可极大地提高TiO2的催化性能。此外,通过调节TiO2的暴露晶面来提高其光催化性能的方式也引起了广泛关注[15-17]。YANG等[16]利用TiF4作为钛源,HF作为形貌控制剂合成了具有(001)面的锐钛型TiO2单晶,其晶面的形成可有效地优化光生电子空穴的迁移路径和分离率,进而显著提高光催化效率。
值得关注的是,反应介质是影响TiO2光催化氧化还原性能的重要因素[18-21]。因此,可通过改变反应溶剂的性质以调节氧化、还原反应之间的竞争关系。质子性有机溶剂作为空穴捕获剂可抑制系统中光生电子-空穴对的复合,从而提高催化剂表面积聚的光生电子的浓度和光催化还原活性。在甲醇、乙醇和异丙醇等质子性有机溶剂中,乙醇和异丙醇作为光催化反应溶剂时,可能会出现醛、酮等中间产物影响反应的进程[22]。甲醇作为光催化反应的溶剂具有最高的还原效率,这表明质子性溶剂的极性是影响光催化还原性能的重要影响因素之一。同时,甲醇具有饱和醇的高活性和极性,能有效吸附在TiO2表面与光生空穴迅速反应[23]。甲醇还具有低粘度和高极化率的特点[24],可以和光生空穴反应产生甲氧基自由基并进一步分解为阴离子自由基,从而为反应系统提供丰富的电子和H+以促进还原反应的进行。本研究采用溶胶-凝胶法制备了TiO2光催化剂,考察了TiO2在甲醇和水混合溶剂中光催化氧化、还原3,4-二氯硝基苯的性能,并通过羟基自由基(·OH)和氧化还原电位(Eh)[25-26]随反应进程的量化变化关系对3,4-二氯硝基苯的光催化反应机制进行进一步探讨。
TiO2纳米颗粒在甲醇-水溶液中对3,4-二氯硝基苯的光催化性能
Photocatalytic performance of TiO2 nanoparticles for 3,4-dichloronitrobenzene in methanol-aqueous solution
-
摘要: 在紫外光照射下,考察了混合溶剂中甲醇和水的相对含量对二氧化钛(TiO2)催化3,4-二氯硝基苯性能的影响,对3,4-二氯硝基苯的降解率以及其还原产物(3,4-二氯苯胺)的产率进行了研究。结果表明:当V甲醇∶V水为5∶5时,在光催化反应前40 min内,3,4-二氯硝基苯的降解率可达26.81%;当V甲醇∶V水为9∶1时,在240 min内,3,4-二氯苯胺的产率最高为78%。根据氧化还原电势和羟基自由基(·OH)荧光检测的结果,推测了可能的光催化反应机制:混合溶剂中水量越高,越有利于氧化反应的进行;甲醇的含量较高,越有利于还原反应的进行。甲醇作为溶剂和空穴捕获剂可促进3,4-二氯硝基苯的还原反应,而水作为反应介质有利于·OH的生成,进而促进氧化反应。Abstract: Under UV irradiation, the effects of the relative content of methanol and water in the mixed solvent on photocatalytic redox of 3,4-dichloronitrobenzene over titanium dioxide (TiO2) were investigated. Photocatalytic degradation efficiencies of 3,4-dichloronitrobenzene and yields of 3,4-dichloroaniline were measured. The results showed that the degradation efficiency reached 26.81% in the first 40 minutes of photocatalytic process when the volume ratio of methanol to water was 5∶5, while the yield of 3,4-dichloroaniline was the highest and reached 78% in 240 minutes of photocatalytic process when the volume ratio of methanol to water was 9∶1. The oxidation-reduction potential and hydroxyl radicals tests were used to reveal the photocatalytic mechanisms. High relative content of water in solvent was beneficial for oxidation, while high relative content of methanol in solvent was beneficial for reduction. As solvent of 3,4-dichloroaniline/3,4-dichloronitrobenzene and photogenerated hole scavenger, methanol could promote the reduction of 3,4-dichloronitrobenzene. As a reaction media, water was beneficial for hydroxyl radical production, and could promote the oxidation of 3,4-dichloronitrobenzene.
-
Key words:
- TiO2 /
- 3,4-dichloronitrobenzene /
- methanol-water solution /
- photocatalytic reaction
-
-
[1] TAFESH A M, WEIGUNY J. A review of the selective catalytic reduction of aromatic nitro compounds into aromatic amines, isocyanates, carbamates, and ureas using CO[J]. Chemical Reviews, 1996, 96: 2035-2052. doi: 10.1021/cr950083f [2] CARENA L, PROTO M, MINELLA M, et al. Evidence of an important role of photochemistry in the attenuation of the secondary contaminant 3, 4-dichloroaniline in paddy water[J]. Environmental Science & Technology, 2018, 52: 6334-6342. [3] CÁRDENAS-LIZANA F, GÓMEZ-QUERO S, KEANE M A. Clean production of chloroanilines by selective gas phase hydrogenation over supported Ni catalysts[J]. Applied Catalysis A: General, 2008, 334: 199-206. doi: 10.1016/j.apcata.2007.10.007 [4] ZHENG Y F, MA K, WANG H L, et al. A green reduction of aromatic nitro compounds to aromatic amines over a novel Ni/SiO2 catalyst passivated with a gas mixture[J]. Catalysis Letters, 2008, 124: 268-276. doi: 10.1007/s10562-008-9452-2 [5] WANG Y C, ZHANG L, DONG L H. An overview of application and research on photocatalytic oxidation processes for wastewater advanced treatment[J]. Water Purification Technology, 2012, 31: 9-13. [6] LI C C, SHEN W H, CHEN X Q. Mechanism of photocatalytic oxidation reaction and its application in the treatment of wastewater from paper mills[J]. China Pulp & Paper, 2009, 28: 65-71. [7] ZHANG L Q, HE X, XU X W, et al. Highly active TiO2/g-C3N4/G photocatalyst with extended spectral response towards selective reduction of nitrobenzene[J]. Applied Catalysis B: Environmental, 2017, 203: 1-8. doi: 10.1016/j.apcatb.2016.10.003 [8] BISHOP C A, BROOKS R J, CAREY J H, et al. The case for a cause-effect linkage between environmental contamination and development in eggs of the common snapping turtle (Chelydra S. serpentina) from Ontario, Canada[J]. Journal of Toxicology and Environmental Health, Part A, 1991, 33: 521-547. doi: 10.1080/15287399109531539 [9] KAUR R, PAL B. Cu nanostructures of various shapes and sizes as superior catalysts for nitro-aromatic reduction and co-catalyst for Cu/TiO2 photocatalysis[J]. Applied Catalysis A: General, 2015, 491: 28-36. doi: 10.1016/j.apcata.2014.10.035 [10] ZHANG X M, JI G B, LIU W, et al. A novel Co/TiO2 nanocomposite derived from a metal-organic framework: Synthesis and efficient microwave absorption[J]. Journal of Materials Chemistry C, 2016, 4: 1860-1870. doi: 10.1039/C6TC00248J [11] WANG C, LI Y. Preparation and characterisation of S doped TiO2/natural zeolite with photocatalytic and adsorption activities[J]. Materials Technology, 2014, 29: 204-209. doi: 10.1179/1753555714Y.0000000127 [12] VARGAS D X M, DE LA ROSA J R, LUCIO-ORTIZ C J, et al. Photocatalytic degradation of trichloroethylene in a continuous annular rector using Cu-doped TiO2 catalysts by sol-gel synthesis[J]. Applied Catalysis B: Environmental, 2015, 179: 249-261. doi: 10.1016/j.apcatb.2015.05.019 [13] ZARRABI M, ENTEZARI M H. Modification of C/TiO2@MCM-41 with nickel nanoparticles for photocatalytic desulfurization enhancement of a diesel fuel model under visible light[J]. Journal of Colloid and Interface Science, 2015, 457: 353-359. doi: 10.1016/j.jcis.2015.07.021 [14] TU W G, ZHOU Y, LIU Q, et al. An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO2-graphene 2D sandwich-like hybrid nanosheets: Graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane[J]. Advanced Functional Materials, 2013, 23: 1743-1749. doi: 10.1002/adfm.201202349 [15] HUANG W X. Oxide nanocrystal model catalysts[J]. Accounts of Chemical Research, 2016, 49: 520-527. doi: 10.1021/acs.accounts.5b00537 [16] YANG H G, SUN C H, QIAO S Z, et al. Anatase TiO2 single crystals with a large percentage of reactive facets[J]. Nature, 2008, 453: 638. doi: 10.1038/nature06964 [17] WANG X, LI R G, XU Q, et al. Roles of (001) and (101) facets of anatase TiO2 in photocatalytic reactions[J]. Acta Physico-Chimica Sinica, 2013, 29: 1566-1571. doi: 10.3866/PKU.WHXB201304284 [18] HIROSHI K, SHIN-ICHI, TSUYOSHI M, et al. Photocatalytic reduction of nitrobenzene to aniline in an aqueous suspension of titanium (IV) oxide particles in the presence of oxalic acid as a hole scavenger and promotive effect of dioxygen in the system[J]. Chemistry Letters, 2009, 38: 410-411. doi: 10.1246/cl.2009.410 [19] FERRY J L, GLAZE W H. Photocatalytic reduction of nitro organics over illuminated titanium dioxide: Role of the TiO2 surface[J]. Langmuir, 1998, 14: 3551-3555. doi: 10.1021/la971079x [20] ZHAO H K, XU H, YANG Z P, et al. Solubility of 3, 4-dichloronitrobenzene in methanol, ethanol, and liquid mixtures (methanol + water, ethanol + water): Experimental measurement and thermodynamic modeling[J]. Journal of Chemical and Engineering Data, 2013, 58: 3061-3068. doi: 10.1021/je400507u [21] MA L, CHEN S, LU C S, et al. Highly selective hydrogenation of 3, 4-dichloronitrobenze over Pd/C catalysts without inhibitors[J]. Catalysis Today, 2011, 173: 62-67. doi: 10.1016/j.cattod.2011.06.011 [22] FLORES S O, RIOS-BERNIJ O, VALENZUELA M A, et al. Photocatalytic reduction of nitrobenzene over titanium dioxide: By-product identification and possible pathways[J]. Topics in Catalysis, 2007, 44: 507-511. doi: 10.1007/s11244-006-0098-2 [23] CHEN S F, ZHANG H Y, YU X L, et al. Photocatalytic reduction of nitrobenzene by titanium dioxide powder[J]. Chinese Journal of Chemistry, 2010, 28: 21-26. doi: 10.1002/cjoc.201090030 [24] BREZOVÁ V, BLAŽKOVÁ A, ŠURINA I, et al. Solvent effect on the photocatalytic reduction of 4-nitrophenol in titanium dioxide suspensions[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 107: 233-237. doi: 10.1016/S1010-6030(96)04577-7 [25] PERISSINOTTI L L, BRUSA M A, GRELA M A. Yield of carboxyl anion radicals in the photocatalytic degradation of formate over TiO2 particles[J]. Langmuir, 2001, 17: 8422-8427. doi: 10.1021/la0155348 [26] KRASAE N, WANTALA K. Enhanced nitrogen selectivity for nitrate reduction on Cu-nZVI by TiO2 photocatalysts under UV irradiation[J]. Applied Surface Science, 2016, 380: 309-317. doi: 10.1016/j.apsusc.2015.12.023 [27] SHEN C C, ZHU Q, ZHAO Z W, et al. Plasmon enhanced visible light photocatalytic activity of ternary Ag2Mo2O7@ AgBr-Ag rod-like heterostructures[J]. Journal of Materials Chemistry A, 2015, 3: 14661-14668. doi: 10.1039/C5TA02337H [28] ZHANG J W, PENG C, WANG H F, et al. Identifying the role of photogenerated holes in photocatalytic methanol dissociation on rutile TiO2 (110)[J]. ACS Catalysis, 2017, 7: 2374-2380. doi: 10.1021/acscatal.6b03348 [29] LIU N, LI H J, DING F, et al. Analysis of biodegradation by-products of nitrobenzene and aniline mixture by a cold-tolerant microbial consortium[J]. Journal of Hazardous Materials, 2013, 260: 323-329. doi: 10.1016/j.jhazmat.2013.05.033 [30] MAHDAVI F, BRUTON T C, LI Y Z. Photoinduced reduction of nitro compounds on semiconductor particles[J]. Journal of Organic Chemistry, 1993, 58: 744-746. doi: 10.1021/jo00055a033