-
电芬顿法是芬顿法的分支,基于O2在阴极的二电子还原产生H2O2,并与溶液中添加的Fe2+发生芬顿反应产生强氧化性的羟基自由基·OH,从而氧化降解有机污染物。由于可方便地控制H2O2的连续生成,同时芬顿反应的产物Fe3+在阴极被还原为Fe2+,使Fe2+得以再生利用。相对于普通的芬顿法和其他的电化学方法,该方法所需Fe2+浓度小,高效、低能耗,且易于实现自动化控制[1-2]。
电芬顿法的技术瓶颈在于对氧的二电子还原需要具有高催化活性的阴极材料。碳材料因其化学稳定性高、价格低廉、易于表面修饰等优点而受到青睐。与传统的三维碳材料石墨等相比,由石墨剥离得到的二维材料石墨烯具有超高电导率、超大的比表面积、优异的导热和导电性等优点[3-4],是理想的电极基体材料。另一类纳米碳分支——碳量子点(CQDs),是一种主要由sp2/sp3杂化碳构成的零维碳纳米材料[5],直径通常小于10 nm,在其表面有丰富的官能团和边缘缺陷[6-7]。已有文献将CQDs结合于碳基电极表面用于电化学分析目的,显著提升了电极的电化学响应,显示CQDs具有明显的电化学催化活性[8-10]。另外,CQDs和掺氮碳量子点N-CQDs修饰的rGO复合电极也被用于电池、超级电容器等电能存储与转换材料以及光催化中[11-13]。CQDs零维的小尺寸、丰富的表面以及边缘缺陷等结构特性可能是其催化性能的来源[14]。但目前为止,尚未见到将CQDs修饰电极用于电化学催化降解污染物的报道。
基于零维CQDs和二维石墨烯材料的特性,本研究将合成的零维CQDs与制备的二维材料rGO结合,并载于石墨片(graphite flake,GF)表面制备了CQDs-rGO/GF复合电极,将该复合电极用在电芬顿法中做阴极材料,考察了由溶解氧二电子还原生成过氧化氢的情况。对硝基苯酚(PNP)是有毒性和生物蓄积性的苯酚衍生物[15],是制造药物、染料和农药等的原料,也是常用的皮革防腐剂,其结构稳定,不易生物降解。以PNP为目标污染物,考察了所制备的复合电极电芬顿体系对PNP的降解性能。
CQDs-rGO/GF阴极电芬顿体系中过氧化氢的生成和对硝基苯酚的降解
Production of hydrogen peroxide and p-nitrophenol degradation by electro-Fenton system with CQDs modified rGO/GF cathode
-
摘要: 对二维材料石墨烯进行表面修饰以提高其催化性能为目前较为重要的研究方向。利用水热法合成了直径5 nm的零维材料碳量子点(carbon quantum dots, CQDs),将其与还原石墨烯(reduced graphene oxide,rGO)进行结合,并载于石墨片(graphite flake,GF)表面制备了CQDs-rGO/GF复合电极。将该电极作为电芬顿体系的阴极,考察了CQDs对氧的二电子电化学还原生成过氧化氢的阴极反应的影响;以对硝基苯酚(p-nitrophenol,PNP)为目标污染物,考察了在Fe2+存在时该电芬顿体系对PNP的降解性能。结果表明:CQDs显著提高了阴极的活性,CQDs-rGO/GF阴极体系中过氧化氢的生成量是rGO/GF电极的1.9倍,是GF电极的2.4倍;在Fe2+存在时,该电芬顿体系对PNP的降解率达到90.6%,COD去除率为64.3%;羟基自由基是使PNP降解的主要活性物种。降解过程中PNP的UV-Vis谱图和COD去除率的变化均显示绝大部分PNP已被矿化,少量转化为小分子羧酸。以上研究结果表明,零维CQDs可用于提高二维材料rGO电极的催化性能。Abstract: Surface modification of a 2D graphene for its catalytic performance improvement is an important research field. In this study, carbon quantum dots (CQDs) with 5 nm diameter and abundant edge defects were synthesized by hydrothermal method and combined with the reduced graphene oxide (rGO). The CQDs combined rGO were then deposited at a graphite flake (GF) to prepare a CQDs-rGO/GF electrode. This composite electrode was then applied as cathode to generate hydrogen peroxide through electro-reduction of oxygen. In the presence of Fe2+, the degradation of p-nitrophenol (PNP) in this electro-Fenton system was investigated. The experiment results showed that CQDs significantly improved the catalytic activity of rGO. The yield of hydrogen peroxide generated in the CQDs-rGO/GF cathode system was 1.9 times as much as that of rGO/GF electrode and 2.4 times as much as that of bare GF electrodes. In the presence of Fe2+, the degradation rate of PNP reached 90.6% and the removal rate of COD was 64.3%. Hydroxyl radical ·OH was proved to be the main active species that degraded PNP. The changes of UV-Vis spectra of PNP and COD removal during the degradation process showed that most parts of PNP were mineralized, and a small amount of PNP was converted into smaller molecular carboxylic acids. This work concluded that zero dimensional CQDs could improve the performance of 2D-rGO electrode.
-
Key words:
- carbon quantum dots /
- reduced graphene oxide /
- electro-Fenton /
- p-nitrophenol /
- contaminant removal
-
-
[1] WANG Y, SONG H, CHEN J, et al. A novel solar photo-Fenton system with self-synthesizing H2O2: Enhanced photo-induced catalytic performances and mechanism insights[J]. Applied Surface Science, 2020, 512: 145650. doi: 10.1016/j.apsusc.2020.145650 [2] RODRIGO M A, OTURAN N, OTURAN M A. Electrochemically assisted remediation of pesticides in soils and water: A review[J]. Chemical Reviews, 2014, 114(17): 8720-8745. doi: 10.1021/cr500077e [3] QIU B, XING M, ZHANG J. Recent advances in three-dimensional graphene based materials for catalysis applications[J]. Chemical Society Reviews, 2018, 47(6): 2165-2216. doi: 10.1039/C7CS00904F [4] RAFIGH S M, RAHIMPOUR S A. Melanoidin removal from molasses wastewater using graphene oxide nanosheets[J]. Separation Science and Technology, 2020, 55(13): 2281-2293. doi: 10.1080/01496395.2019.1626424 [5] SHAALAN N M, HAMAD D, ABDEL-LATIEF A Y, et al. Preparation of quantum size of tin oxide: Structural and physical characterization[J]. Progress in Natural Science: Materials International, 2016, 26(2): 145-151. doi: 10.1016/j.pnsc.2016.03.002 [6] SONG Z, QUAN F, XU Y, et al. Multifunctional N, S co-doped carbon quantum dots with pH- and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione[J]. Carbon, 2016, 104: 169-178. doi: 10.1016/j.carbon.2016.04.003 [7] ZHANG X, WANG F, HUANG H, et al. Carbon quantum dot sensitized TiO2 nanotube arrays for photoelectrochemical hydrogen generation under visible light[J]. Nanoscale, 2013, 5(6): 2274-2278. doi: 10.1039/c3nr34142a [8] HUANG Q, HU S, ZHANG H, et al. Carbon dots and chitosan composite film based biosensor for the sensitive and selective determination of dopamine[J]. Analyst, 2013, 138(18): 5417-5423. doi: 10.1039/c3an00510k [9] SHANKAR S S, SHEREEMA R M, RAMACHANDRAN V, et al. Carbon quantum dot-modified carbon paste electrode-based sensor for selective and sensitive determination of adrenaline[J]. ACS Omega, 2019, 4(4): 7903-7910. doi: 10.1021/acsomega.9b00230 [10] WEI Y, XU Z, WANG S, et al. One-step preparation of carbon quantum dots-reduced graphene oxide nanocomposite-modified glass carbon electrode for the simultaneous detection of ascorbic acid, dopamine, and uric acid[J]. Ionics, 2020, 26(11): 5817-5828. doi: 10.1007/s11581-020-03703-5 [11] CHOI D, HAM S, JANG D J, et al. Visible-light photocatalytic reduction of Cr(VI) via carbon quantum dots-decorated TiO2 nanocomposites[J]. Journal of Environmental Chemical Engineering, 2018, 6(1): 1-8. doi: 10.1016/j.jece.2017.11.065 [12] LI J, YUN X, HU Z, et al. Three-dimensional nitrogen and phosphorus co-doped carbon quantum dots/reduced graphene oxide composite aerogels with a hierarchical porous structure as superior electrode materials for supercapacitors[J]. Journal of Materials Chemistry A, 2019, 7(46): 26311-26325. doi: 10.1039/C9TA08151H [13] SAMANTARA A K, SAHU S, GHOSH A, et al. Sandwiched graphene with nitrogen, sulphur co-doped CQDs: An efficient metal-free material for energy storage and conversion applications[J]. Journal of Materials Chemistry A, 2015, 3(33): 16961-16970. doi: 10.1039/C5TA03376D [14] ALGARRA M, GONZÁLEZ-CALABUIG A, RADOTIĆ K, et al. Enhanced electrochemical response of carbon quantum dot modified electrodes[J]. Talanta, 2018, 178: 679-685. doi: 10.1016/j.talanta.2017.09.082 [15] GRZEGORZEWSKA A K, HRABIA A, KOWALIK K, et al. In vitro effects of PNP and PNMC on apoptosis and proliferation in the hen ovarian stroma and prehierarchal follicles[J]. Acta Histochemica, 2020, 122(1): 151463. doi: 10.1016/j.acthis.2019.151463 [16] 俱玉云. 氧化石墨烯、碳量子点复合纳米材料在环境污染物催化降解、生物样品检测方面的应用[D]. 兰州: 兰州大学, 2015. [17] 王莉, 吕婷, 阮枫萍, 等. 水热法制备的碳量子点[J]. 发光学报, 2014, 35(6): 707-708. [18] WANG A, QU J, LIU H, et al. Mineralization of an azo dye acid red 14 by photoelectro-Fenton process using an activated carbon fiber cathode[J]. Applied Catalysis B: Environmental, 2008, 84(3/4): 393-399. [19] PENG H, TRAVAS-SEJDIC J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates[J]. Chemistry of Materials, 2009, 21(23): 5563-5565. doi: 10.1021/cm901593y [20] RAY S C, SAHA A, JANA N R, et al. Fluorescent carbon nanoparticles: Synthesis, characterization, and bioimaging application[J]. Journal of Physical Chemistry C, 2009, 113(43): 18546-18551. doi: 10.1021/jp905912n [21] HU Y, YANG J, JIA L, et al. Ethanol in aqueous hydrogen peroxide solution: Hydrothermal synthesis of highly photoluminescent carbon dots as multifunctional nanosensors[J]. Carbon, 2015, 93: 999-1007. doi: 10.1016/j.carbon.2015.06.018 [22] 李晓峰, 周明, 龚爱华, 等. 氮掺杂碳量子点的合成, 表征及其在细胞成像中的应用[J]. 材料科学与工程学报, 2015, 33(1): 41-45. [23] KULANDAIVALU T, RASHID S A, SABLI N, et al. Visible light assisted photocatalytic reduction of CO2 to ethane using CQDs/Cu2O nanocomposite photocatalyst[J]. Diamond and Related Materials, 2019, 91: 64-73. doi: 10.1016/j.diamond.2018.11.002 [24] NI D, SHANG Q, GUO T, et al. An effective strategy to improve dynamic and cyclic stability of HQC/TiO2 photocatalyst by introducing carbon quantum dots or iron ion via metal-complex[J]. Applied Catalysis B: Environmental, 2017, 210: 504-512. doi: 10.1016/j.apcatb.2017.04.019 [25] KUMARI A, KUMAR A, SAHU S K, et al. Synthesis of green fluorescent carbon quantum dots using waste polyolefins residue for Cu2+ ion sensing and live cell imaging[J]. Sensors and Actuators B: Chemical, 2018, 254: 197-205. doi: 10.1016/j.snb.2017.07.075 [26] ARUMUGHAM T, ALAGUMUTHU M, AMIMODU R G, et al. A sustainable synthesis of green carbon quantum dot (CQD) from Catharanthus roseus (white flowering plant) leaves and investigation of its dual fluorescence responsive behavior in multi-ion detection and biological applications[J]. Sustainable Materials and Technologies, 2020, 23: e00138. doi: 10.1016/j.susmat.2019.e00138 [27] LEI C W, HSIEH M L, LIU W R. A facile approach to synthesize carbon quantum dots with pH-dependent properties[J]. Dyes and Pigments, 2019, 169: 73-80. doi: 10.1016/j.dyepig.2019.05.014 [28] BEHZADI F, SAIEVAR-IRANIZAD E, BAYAT A. One step synthesis of graphene quantum dots, graphene nanosheets and carbon nanospheres: Investigation of photoluminescence properties[J]. Materials Research Express, 2019, 6(10): 105615. doi: 10.1088/2053-1591/ab3dd5 [29] HSU P C, CHANG H T. Synthesis of high-quality carbon nanodots from hydrophilic compounds: Role of functional groups[J]. Chemical Communications, 2012, 48(33): 3984-3986. doi: 10.1039/c2cc30188a [30] CHOUDHARI A, BHANVASE B A, SAHARAN V K, et al. Sonochemical preparation and characterization of rGO/SnO2 nanocomposite: Electrochemical and gas sensing performance[J]. Ceramics International, 2020, 46(8): 11290-11296. doi: 10.1016/j.ceramint.2020.01.156 [31] HE Y, MA Y, MENG J, et al. Dual electrochemical catalysis of Bi2Mo3O12/Ti cathode for hydrogen peroxide production in electro-Fenton system[J]. Journal of Catalysis, 2019, 373: 297-305. doi: 10.1016/j.jcat.2019.04.005 [32] XIONG Z, LAI B, YANG P, et al. Comparative study on the reactivity of Fe/Cu bimetallic particles and zero valent iron (ZVI) under different conditions of N2, air or without aeration[J]. Journal of Hazardous Materials, 2015, 297: 261-268. doi: 10.1016/j.jhazmat.2015.05.006 [33] 黄卫华, 杨丹, 阮界冰, 等. 光催化与Fenton试剂对硝基苯酚降解的研究[J]. 环境科学技术, 2010, 33(12): 71-75.