-
近年来,我国大力推进生活垃圾源头分类工作,初步构建了以“四分法”为基础的城市生活垃圾分类体系。生活垃圾可以分为厨余垃圾、可回收物、有害垃圾和其他垃圾。厨余垃圾包括家庭厨余垃圾、餐厨垃圾和果蔬垃圾等,占中国城市生活垃圾总量的40%~60%,是生活垃圾分类工作的重点和难点[1]。目前,各城市收集到的厨余垃圾主要是餐厨垃圾,一些重点城市也开始了家庭厨余垃圾和果蔬垃圾的分类收运。分出的厨余垃圾大多进行厌氧消化处理,少量采用好氧堆肥、转化饲料等模式,但大部分厨余垃圾仍未分出,与其他垃圾混合,最终进入到焚烧厂或填埋场进行处理[2-3]。
为了构建完整的生活垃圾分类体系,提高厨余垃圾源头分类率和建设厨余垃圾处理设施已成为许多城市的重点工作。然而,厨余垃圾分类,特别是家庭厨余垃圾分类,虽然提高了生活垃圾分类率,但也存在着管理成本增加和增加终端设施建设的难题。针对厨余垃圾管理策略,许多研究者从不同角度进行了分析。YU等[4]认为,两相厌氧消化相比单相厌氧消化更适于厨余垃圾处理;厨余垃圾分类后,厌氧消化会比混合焚烧具有更好的环境效益[5]。然而,厨余垃圾分类也推高了社会成本,为了实现社会成本和环境效益的平衡,家庭厨余垃圾应适度分类[6]。GUO等[7]比较了厨余垃圾生物精炼与厌氧消化的环境效应,发现生物精炼可以固定75%的碳,但也会产生大量废液。EDWARDS等[8]的研究结果表明,厌氧消化的碳排放明显小于好氧堆肥和填埋。GUVEN等[9]对比分析了厨余垃圾焚烧、厌氧消化和破碎后进入下水管网3种处理模式,发现厨余垃圾焚烧的能源回收效率最高,具有最好的环境效益。这些已有研究主要关注厨余垃圾处理技术本身的环境影响,还缺少对中国城市生活垃圾分类体系中厨余垃圾处理模式的系统性分析。
针对上述问题,本研究从回收利用率、环境效益和全周期费用等角度分析了厨余垃圾不分类(与其他垃圾混合焚烧)和分类处理(加工饲料、厌氧消化和好氧堆肥)的优劣。其中,回收利用率是评估垃圾分类工作成效的关键指标,而环境效益和全周期费用是垃圾分类工作需要考量的2个最重要因素。在环境效益方面,碳排放是目前广受关注的焦点。食品生产全链条的碳排放占全球碳排放的26%[10],而厨余垃圾导致的碳排放占全球碳排放的6%左右[11]。因此,本研究重点评估了不同处理模式的碳排放情况。在这些研究的基础上,本研究希望能够给出厨余垃圾处理模式的优先级排序。
我国厨余垃圾处理模式的综合比较和优化策略
Comprehensive comparison and optimal strategies of food waste treatment modes
-
摘要: 如何选择厨余垃圾处理模式以实现环境、经济效益的最大化是生活垃圾分类工作中的一个关键问题,但目前还缺乏系统分析。以回收利用率、碳排放和全周期费用为衡量指标,综合比较了混合焚烧、厌氧消化、好氧堆肥和饲料化4种厨余垃圾处理模式。结果表明,饲料化的环境效应最好,其回收利用率为80%~95%,碳排放(以二氧化碳当量计)为−112~−67 kg·t−1。同时发现,厌氧消化也具有较好的环境效应,回收利用率可达31%~42%,而碳排放为−209~−65 kg·t−1。好氧堆肥可以产生肥料并通过腐殖化固定有机碳,其回收利用率与厌氧消化接近,但一旦其温室气体泄漏,则会导致显著的碳排放;好氧堆肥在充分供氧的条件下,碳排放可以从420 kg·t−1降低至10 kg·t−1。厨余垃圾含水率高,混合焚烧发电的回收利用率仅为9%,碳减排效应可忽略;但通过热电联产提高系统热效率则可以实现碳减排。混合焚烧的全周期费用最低,而分类处理的全周期费用则比之高出125元·t−1,这些费用主要来自于垃圾分类工作开始阶段的宣教、监管支出。综和考虑以上各项研究结果可得出结论,厨余垃圾处理模式的优先顺序为:饲料化、厌氧消化、好氧堆肥、混合焚烧。Abstract: How to choose a food waste treatment mode to maximize environmental and economic benefits is a key issue in the classification of municipal solid waste (MSW), but there is still a lack of systematic analysis. In this study, recovery rate, carbon emission, and life cycle cost were used as the measurement indicators to comprehensively compare four treatment modes: mixed incineration, anaerobic digestion, aerobic composting, and feed conversion. The results show that the environmental effect of feed conversion is the best, with a recovery rate of 80% to 95%, and a carbon emission (calculated in carbon dioxide equivalent) of −112 to −67 kg·t−1. Secondly, anaerobic digestion also has a good environmental effect, with a recovery rate of 31% to 42%, and a carbon emission of −209 to −65 kg·t−1. Aerobic composting can produce fertilizer and fix organic carbon through humification. Its recovery rate is close to that of anaerobic digestion, but the leakage of greenhouse gases can cause significant carbon emissions. Under the condition of sufficient oxygen supply, the carbon emissions can be reduced from 420 kg·t−1 to 10 kg·t−1. The water content of food waste is high, and the recovery rate of mixed incineration with power generation is only 9%, and the carbon emission reduction effect is negligible. However, carbon emission reduction can be achieved by improving the thermal efficiency through combining heat and power systems. The life cycle cost of mixed incineration is the lowest, while the cost of MSW classification is 125 Yuan·t−1 higher. The increment mainly comes from the propaganda education and supervision expenditures at the beginning of MSW classification work. Therefore, the priority order of food waste treatment modes is feed conversion, anaerobic digestion, aerobic composting, and mixed incineration.
-
Key words:
- garbage classification /
- food waste /
- recovery /
- carbon emission /
- life cycle cost
-
[1] 潘永刚, 周汉城, 唐艳菊. 两网融合:生活垃圾减量化和资源化的模式与路径[J]. 再生资源与循环经济, 2016, 9(12): 13-20. doi: 10.3969/j.issn.1674-0912.2016.12.005 [2] 丁晓翔, 姜忠磊, 汪洋, 等. 国内主要餐厨垃圾处理技术模式探讨分析[J]. 科技创新与应用, 2020(1): 6-11. [3] 邓俊. 餐厨垃圾无害化处理与资源化利用现状及发展趋势[J]. 环境工程技术学报, 2019, 9(6): 637-642. [4] YU Q, LI H, DENG Z, et al. Comparative assessment on two full-scale food waste treatment plants with different anaerobic digestion processes[J]. Journal of Cleaner Production, 2020, 263: 121625. doi: 10.1016/j.jclepro.2020.121625 [5] YU Q, LI H. Life cycle environmental performance of two restaurant food waste management strategies at Shenzhen, China[J]. Journal of Material Cycles and Waste Management, 2021, 23: 826-839. doi: 10.1007/s10163-020-01157-5 [6] YU Q, LI H. Moderate separation of household kitchen waste towards global optimization of municipal solid waste management[J]. Journal of Cleaner Production, 2020, 277: 123330. doi: 10.1016/j.jclepro.2020.123330 [7] GUO H, ZHAO Y, DAMGAARD A, et al. Material flow analysis of alternative biorefinery systems for managing Chinese food waste[J]. Resources, Conservation and Recycling, 2019, 149: 197-209. doi: 10.1016/j.resconrec.2019.05.010 [8] EDWARDS J, OTHMAN M, CROSSIN E, et al. Life cycle assessment to compare the environmental impact of seven contemporary food waste management systems[J]. Bioresource Technology, 2018, 248(Pt A): 156-173. [9] GUVEN H, WANG Z, ERIKSSON O. Evaluation of future food waste management alternatives in Istanbul from the life cycle assessment perspective[J]. Journal of Cleaner Production, 2019, 239: 117999. doi: 10.1016/j.jclepro.2019.117999 [10] POORE J, NEMECEK T. Reducing food's environmental impacts through producers and consumers[J]. Science, 2018, 360(6392): 987-992. doi: 10.1126/science.aaq0216 [11] TIM S, RICHARD W, CRAIG H, et al. Creating a sustainable food future: A menu of solutions to feed nearly 10 billion people by 2050[R]. World Resources Institute, 2019. [12] 郝晓地, 周鹏, 曹达啓. 餐厨垃圾处置方式及其碳排放分析[J]. 环境工程学报, 2017, 11(2): 673-682. [13] 郑苇, 靳俊平, 刘淑玲, 等. 基于中国餐厨垃圾性质的适宜资源化方法探讨[J]. 环境卫生工程, 2015, 23(6): 1-4. doi: 10.3969/j.issn.1005-8206.2015.06.001 [14] 周俊, 王梦瑶, 王改红, 等. 餐厨垃圾资源化利用技术研究现状及展望[J]. 生物资源, 2020, 42(1): 87-96. [15] DOU Z, TOTH J D, WESTENDORF M L. Food waste for livestock feeding: Feasibility, safety, and sustainability implications[J]. Global Food Security, 2018, 17: 154-161. doi: 10.1016/j.gfs.2017.12.003 [16] SU H, ZHOU X, ZHENG R, et al. Hydrothermal carbonization of food waste after oil extraction pre-treatment: Study on hydrochar fuel characteristics, combustion behavior, and removal behavior of sodium and potassium[J]. Science of the Total Environment, 2021, 754: 142192. doi: 10.1016/j.scitotenv.2020.142192 [17] ZHENG C, MA X, YAO Z, et al. The properties and combustion behaviors of hydrochars derived from co-hydrothermal carbonization of sewage sludge and food waste[J]. Bioresource Technology, 2019, 285: 121347. doi: 10.1016/j.biortech.2019.121347 [18] ZHAI Y, WANG T, ZHU Y, et al. Production of fuel pellets via hydrothermal carbonization of food waste using molasses as a binder[J]. Waste Management, 2018, 77: 185-194. doi: 10.1016/j.wasman.2018.05.022 [19] LI Y, JIN Y, LI J, et al. Effects of thermal pretreatment on degradation kinetics of organics during kitchen waste anaerobic digestion[J]. Energy, 2017, 118: 377-386. doi: 10.1016/j.energy.2016.12.041 [20] DING L, CHENG J, QIAO D, et al. Investigating hydrothermal pretreatment of food waste for two-stage fermentative hydrogen and methane co-production[J]. Bioresource Technology, 2017, 241: 491-499. doi: 10.1016/j.biortech.2017.05.114 [21] MENG Y, LI S, YUAN H, et al. Effect of lipase addition on hydrolysis and biomethane production of Chinese food waste[J]. Bioresource Technology, 2015, 179: 452-459. doi: 10.1016/j.biortech.2014.12.015 [22] 班福忱, 韩雪, 姜亚玲. 生活垃圾焚烧厂垃圾渗滤液处理工程实例[J]. 水处理技术, 2015, 41(9): 133-136. [23] 张国宇, 何明成, 王艳芳, 等. 城市生活垃圾焚烧厂垃圾渗滤液处理零排放实践[J]. 中国给水排水, 2015, 31(12): 102-105. [24] FENG K, LI H, DENG Z, et al. Effect of pre-fermentation types on the potential of methane production and energy recovery from food waste[J]. Renewable Energy, 2020, 146: 1588-1595. doi: 10.1016/j.renene.2019.07.127 [25] 任连海, 黄燕冰, 王攀. 含盐量对餐厨垃圾堆肥理化特性变化规律的影响[J]. 重庆大学学报, 2014, 37(7): 104-109. [26] 杨丹丹, 潘冬梅, 刘圣鹏, 等. 餐厨垃圾乳酸菌发酵生产生物饲料的研究[J]. 中国农学通报, 2016, 32(26): 1-5. doi: 10.11924/j.issn.1000-6850.casb16020067 [27] 任立斌, 杨军, 白圆. 以黑水虻为核心的新型餐厨垃圾处理系统的构建[J]. 甘肃科技, 2020, 36(15): 54-57. doi: 10.3969/j.issn.1000-0952.2020.15.018 [28] 徐长勇, 宋薇, 赵树青, 等. 餐厨垃圾饲料化技术的同源性污染研究[J]. 环境卫生工程, 2011, 19(1): 9-10. doi: 10.3969/j.issn.1005-8206.2011.01.004 [29] 屠进, 沈又幸. 影响垃圾焚烧发电厂效率主要因素的分析[J]. 浙江电力, 2000(6): 32-34. doi: 10.3969/j.issn.1007-1881.2000.05.011 [30] LIUZZO G, VERDONE N, BRAVI M. The benefits of flue gas recirculation in waste incineration[J]. Waste Management, 2007, 27(1): 106-116. doi: 10.1016/j.wasman.2006.01.002 [31] 李欢, 金宜英, 李洋洋. 生活垃圾处理的碳排放和减排策略[J]. 中国环境科学, 2011, 31(2): 259-264. [32] 童胜宝, 刘文刚, 王智. 餐厨垃圾预处理工艺研究及现场应用[J]. 四川环境, 2021, 40(1): 233-238. [33] 边潇, 宫徽, 阎中, 等. 餐厨垃圾不同“收集-处理”模式的碳排放估算对比[J]. 环境工程学报, 2019, 13(2): 449-456. [34] 张园, 耿春女, 何承文, 等. 堆肥过程中有机质和微生物群落的动态变化[J]. 生态环境学报, 2011, 20(11): 1745-1752. doi: 10.3969/j.issn.1674-5906.2011.11.028 [35] 任连海, 钱枫, 曹栩然, 等. 餐厨垃圾好氧堆肥过程参数的变化规律分析[J]. 北京工商大学学报(自然科学版), 2007(2): 1-4. [36] 绳以健, 刘玉德. 餐厨垃圾好氧堆肥反应动力学研究[J]. 环境卫生工程, 2014, 22(2): 40-42. doi: 10.3969/j.issn.1005-8206.2014.02.014 [37] 周营, 朱能武, 刘博文, 等. 微生物菌剂复配及强化厨余垃圾好氧堆肥效果分析[J]. 环境工程学报, 2018, 12(1): 294-303. [38] IPCC. 2019 refinement to the 2006 IPCC guidelines for national greenhouse gas inventories[R]. 2019. [39] 赵磊, 陈德珍, 刘光宇, 等. 垃圾热化学转化利用过程中碳排放的两种计算方法[J]. 环境科学学报, 2010, 30(8): 1634-1641. [40] 何品晶, 陈淼, 杨娜, 等. 我国生活垃圾焚烧发电过程中温室气体排放及影响因素:以上海某城市生活垃圾焚烧发电厂为例[J]. 中国环境科学, 2011, 31(3): 402-407. [41] 亓鹏玉. 城市污水处理厂温室气体的释放量估算研究[J]. 低碳世界, 2016(33): 7-8. [42] DI X, NIE Z, YUAN B, et al. Life cycle inventory for electricity generation in China[J]. International Journal of Life Cycle Assessment, 2007, 12(4): 217-224. doi: 10.1065/lca2007.05.331 [43] TAUBER J, PARRAVICINI V, SVARDAL K, et al. Quantifying methane emissions from anaerobic digesters[J]. Water Science & Technology, 2019, 80(9): 1654-1661. [44] 程冬茹. 汽柴油全生命周期碳排放计算[D]. 北京: 中国石油大学(北京), 2016. [45] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 尿素单位产品碳排放限额: 征求意见稿[S]. 北京, 2019. [46] SAER A, LANSING S, DAVITT N H, et al. Life cycle assessment of a food waste composting system: Environmental impact hotspots[J]. Journal of Cleaner Production, 2013, 52: 234-244. [47] 中华人民共和国国家发展改革委员会. 省级温室气体清单编制指南(试行)[R]. 北京, 2011. [48] MOULT J A, ALLAN S R, HEWITT C N, et al. Greenhouse gas emissions of food waste disposal options for UK retailers[J]. Food Policy, 2018, 77: 50-58. doi: 10.1016/j.foodpol.2018.04.003 [49] SHARMA B K, CHANDEL M K. A life cycle assessment to compare composting schemes for the treatment of municipal solid waste in Mumbai, India[C]//Sixteenth International Waste Management and Landfill Symposium. Sardinia, Italy, 2017. [50] 深圳市住房和建设局. 深圳市环卫工程消耗量定额: SJG 61-2019[S]. 深圳, 2020. [51] 孙春旭. 垃圾分类的经济性分析: 从东京到上海[R]. 国金证券, 2019. [52] 徐钢, 李相儒, 屠翰, 等. 杭州市农村生活垃圾分类减量资源化模式经济性分析[J]. 环境污染与防治, 2019, 41(2): 240-245. [53] 李潭. 垃圾焚烧发电中厨余垃圾分离比例的影响研究[J]. 科学技术创新, 2020(19): 38-39. doi: 10.3969/j.issn.1673-1328.2020.19.022