-
根据国家统计局发布的《中国统计年鉴-2020》,2019年中国城市生活垃圾清运量已达2.42×109 t,其中焚烧处置占比达到50.3%。垃圾焚烧处置技术在减量化、无害化和资源化方面具有明显优势,然而,由此产生的二恶英会带来“邻避效应”等问题。目前,垃圾焚烧电厂执行《生活垃圾焚烧污染控制标准》(GB18485-2014),焚烧烟气中二恶英排放限值(以毒性当量(TEQ)质量浓度计,以下称为“毒性当量质量浓度”)为0.1 ng·m−3。为实现焚烧烟气达标排放,电厂会采用多种烟气净化设置。烟气处理的相关技术包括选择性非催化还原[1]、抑制技术[2]、半干法或者干法[3]、活性炭喷射与布袋联用[4]等,相关设备包括催化塔[3]、湿塔[5]等。
垃圾焚烧过程中的异相催化反应亦会导致二恶英生成。BUEKENS[6]进行了大量的实际焚烧炉测量和模拟研究,分析了二恶英在不同焚烧过程中的生成状况,发现从头合成是实际焚烧炉二恶英生成的主要途径。多氯代二苯并二恶英(Polychlorinated dibenzo dioxins,PCDDs)与多氯代二苯并呋喃(Polychlorinated dibenzofuran,PCDFs)之比被用来判别二恶英的生成途径。若该比值小于1,通常认为二恶英由从头合成反应生成[7]。LILJELIND等[8]发现钒钨钛催化剂在230℃时对二恶英具有98%以上的脱除效率,故催化塔对二恶英的控制效果明显。
本研究以浙江省某生活垃圾焚烧电厂为例,对垃圾焚烧炉燃后区及烟气净化系统不同点位的烟气和飞灰中二恶英浓度及同系物分布进行分析,特别考察烟气净化系统中催化塔的记忆效应对二恶英排放的影响,以期为确定最佳焚烧系统工艺条件提供参考。
垃圾焚烧炉二恶英排放的控制策略及催化塔的记忆效应
Dioxin emission control of waste incinerator and memory effect of catalytic tower
-
摘要: 针对某生活垃圾焚烧炉在稳定燃烧工况下,在燃后区及烟气净化系统不同点位采样并分析了烟气及飞灰中二恶英的排放浓度,分析全过程二恶英生成与控制机理,并针对催化塔的记忆效应进行了研究。结果表明:烟气中的不完全燃烧组分在过热器、省煤器发生异相催化合成反应,省煤器出口烟气中二恶英毒性当量质量浓度为1.227 ng·m-3, 省煤器飞灰中二恶英毒性当量质量分数为0.756 ng·g-1,其中2,3,4,7,8-P5CDF对毒性当量贡献最大。焚烧炉布袋除尘器对烟气中二恶英具有较高的脱除效率,达到98.0%。SCR催化塔存在吸附型记忆效应,导致烟囱排放的二恶英质量浓度升高,通过系统吹扫后,催化塔恢复正常,对烟气二恶英催化降解效率达到64.7%。本研究通过对不同位点烟气及飞灰中二恶英的分析,以掌握二恶英在焚烧炉中的变化特征,可为垃圾焚烧烟气的控制与管理提供参考。Abstract: The formation and control mechanism of dioxins in the whole combustion process and the memory effect of the catalytic tower were studied by sampling and analyzing the emission concentration of dioxins in the flue gas and fly ash at different points in the post-combustion zone and the air pollution control system of a municipal solid waste incinerator under stable burning condition. The results showed that the incomplete combustion components in the flue gas had heterogeneous catalytic synthesis reactions in the superheater and economizer. The dioxin concentration in the flue gas and the fly ash at the outlet of the economizer reached 1.227 ng·m-3 and 0.756 ng·g-1, respectively. In addition, 2,3,4,7,8-P5CDF contributed the most to the toxicity equivalent. The bag filter had a high removal efficiency of dioxins in the flue gas, which reached 98.0%. The SCR catalytic tower had an adsorption-type memory effect, which led to the increase of the mass concentration of dioxins emitted by the chimney. After the system purge , the catalytic tower returned to nomal, and the catalytic degradation efficiency of dioxins in the flue gas reached 64.7%. In this study, the variation characteristics of dioxins in incinerators were analyzed by the study of dioxins in flue gas and fly ash at different locations, which can provide reference for the control and management of waste incineration flue gas.
-
Key words:
- dioxins /
- flue gas /
- fly ash /
- catalytic tower /
- memory effect
-
表 1 焚烧炉中不同采样点二恶英的毒性当量质量浓度
Table 1. Toxic equivalent mass concentrations of dioxins at different sampling points in incinerators
采样点 PCDDs/
(ng·mͨ3)PCDFs/
(ng·mͨ3)PCDDs:
PCDFsPCDD/Fs
(ng·mͨ3)炉膛出口 0.027 0.131 0.21 0.158 低过出口 0.135 0.504 0.27 0.639 省煤器出口 0.304 0.923 0.33 1.227 布袋出口 0.005 0.021 0.24 0.025 烟囱 0.033 0.260 0.13 0.083 -
[1] KUZUHARA S, SATO H, TSUBOUCHI N, et al. Effect of nitrogen-containing compounds on polychlorinated dibenzo-p-dioxin/dibenzofuran formation through de novo synthesis[J]. Environmental Science & Technology, 2005, 39(3): 795-799. [2] LIN X Q, MA Y F, CHEN Z L, et al. Effect of different air pollution control devices on the gas/solid-phase distribution of PCDD/F in a full-scale municipal solid waste incinerator [J]. Environmental Pollution, 2020, 265(Pt B): 114888. [3] CHEN T, SUN C, WANG T J, et al. Removal of PCDD/Fs and CBzs by different air pollution control devices in MSWIs[J]. Aerosol And Air Quality Research, 2020, 20(10): 2260-2272. doi: 10.4209/aaqr.2019.10.0536 [4] CHI K H, CHANG S H, CHANG M B. Reduction of dioxin-like compound emissions from a Waelz plant with adsorbent injection and a dual baghouse filter system[J]. Environmental Science & Technology, 2008, 42(6): 2111-2117. [5] WEVERS M, DE FRé R, RYMEN T, et al. Reduction of dioxin emission from a municipal waste incinerator by wet gas scrubbing[J]. Chemosphere, 1992, 25(7/8/9/10): 1435-1439. [6] BUEKENS A, HUANG H. Comparative evaluation of techniques for controlling the formation and emission of chlorinated dioxins/furans in municipal waste incineration[J]. Journal of Hazardous Materials, 1998, 62(1): 1-33. doi: 10.1016/S0304-3894(98)00153-8 [7] 黄建新. 碳在二恶英类有机物从头合成过程中转化的试验研究 [D]. 杭州: 浙江大学, 2016. [8] LILJELIND P, UNSWORTH J, MAASKANT O, et al. Removal of dioxins and related aromatic hydrocarbons from flue gas streams by adsorption and catalytic destruction[J]. Chemosphere, 2001, 42(5/6/7): 615-623. [9] 王天娇. 生活垃圾焚烧过程中二恶英及其关联物氯苯的特性研究 [D]. 杭州: 浙江大学, 2018. [10] PENG Y Q, CHEN J H, LU S Y, et al. Chlorophenols in municipal solid waste incineration: A review[J]. Chemical Engineering Journal, 2016, 292: 398-414. doi: 10.1016/j.cej.2016.01.102 [11] ZHONG R G, WANG C, ZHANG Z T, et al. PCDD/F levels and phase distributions in a full-scale municipal solid waste incinerator with co-incinerating sewage sludge[J]. Waste Management, 2020, 106: 110-119. doi: 10.1016/j.wasman.2020.03.020 [12] 钱原吉, 吴占松. 生活垃圾焚烧炉中二恶英的生成和计算方法[J]. 动力工程, 2007, 27(4): 616-619. [13] ZHANG M M, BUEKENS A, LI X D. Characterising boiler ash from a circulating fluidised bed municipal solid waste incinerator and distribution of PCDD/F and PCB[J]. Environmental Science And Pollution Research, 2018, 25(23): 1-15. [14] 王玉祥, 倪刘建, 苏文鹏, 等. 某典型生活垃圾焚烧企业烟气中二恶英类变化特征[J]. 干旱环境监测, 2020, 34(1): 20-24. doi: 10.3969/j.issn.1007-1504.2020.01.004 [15] 青宪, 黄蓉, 黄锦琼, 等. 2种活性炭协同布袋除尘对垃圾焚烧厂烟气中二恶英的去除[J]. 环境工程学报, 2017, 11(3): 1677-1682. doi: 10.12030/j.cjee.201511030 [16] ZHANG M M, BUEKENS A. De novo synthesis in iron ore sintering[J]. International Journal Of Environment And Pollution, 2016, 60(1/2/3/4): 111-135. doi: 10.1504/IJEP.2016.082114 [17] LIN Y S, CHEN K S, LIN Y C, et al. Polychlorinated dibenzo-p-dioxins/dibenzofurans distributions in ash from different units in a municipal solid waste incinerator[J]. Journal of Hazardous Materials, 2008, 154(1/2/3): 954-962. [18] ABAD E, CAIXACH J, RIVERA J. Improvements in dioxin abatement strategies at a municipal waste management plant in Barcelona[J]. Chemosphere, 2003, 50(9): 1175-1182. doi: 10.1016/S0045-6535(02)00483-6 [19] SAM-CWAN K, HWAN J S, IL-ROK J, et al. Removal efficiencies of PCDDs/PCDFs by air pollution control devices in municipal solid waste incinerators[J]. Chemosphere, 2001, 43(4/5/6/7): 773-776. [20] CHANG M B, CHI K H, CHANG-CHIEN G P. Evaluation of PCDD/F congener distributions in MWI flue gas treated with SCR catalysts[J]. Chemosphere, 2004, 55(11): 1457-1467. doi: 10.1016/j.chemosphere.2004.01.005 [21] WEI J X, LI H, LIU J G. Phase distribution of PCDD/Fs in flue gas from municipal solid waste incinerator with ultra-low emission control in China[J]. Chemosphere, 2021, 276(9/10/11): 130-166. [22] LÖTHGREN C-J, VAN BAVEL B. Dioxin emissions after installation of a polishing wet scrubber in a hazardous waste incineration facility[J]. Chemosphere, 2005, 61(3): 405-412. doi: 10.1016/j.chemosphere.2005.02.015 [23] WEBER R, SAKURAI T, UENO S, et al. Correlation of PCDD/PCDF and CO values in a MSW incinerator––indication of memory effects in the high temperature/cooling section[J]. Chemosphere, 2002, 49(2): 127-134. doi: 10.1016/S0045-6535(02)00187-X [24] WANG L C, HSI H C, CHANG J E, et al. Influence of start-up on PCDD/F emission of incinerators[J]. Chemosphere, 2007, 67(7): 1346-1353. doi: 10.1016/j.chemosphere.2006.10.081 [25] ZIMMERMANN R, BLUMENSTOCK M, HEGER H, et al. Emission of nonchlorinated and chlorinated aromatics in the flue gas of incineration plants during and after transient disturbances of combustion conditions: delayed emission effects[J]. Environmental Science & Technology, 2001, 35(6): 1019-1030. [26] MA Y F, LIN X Q, CHEN Z L, et al. Influence factors and mass balance of memory effect on PCDD/F emissions from the full-scale municipal solid waste incineration in China[J]. Chemosphere, 2020, 239: 124614. doi: 10.1016/j.chemosphere.2019.124614