-
氨广泛存在于畜牧业、饲料生产、化肥工业及制冷等行业排放的污染物中,不仅会污染环境,还会对人体神经系统、消化系统、呼吸系统和内分泌系统产生不可逆的损伤,甚至致人死亡[1-3]。喷淋填料塔是常见的气态污染物处理设备,可有效消除或降低有害物质浓度[4-5]。氨气在水中溶解后会发生水解反应,使溶液呈碱性。在喷淋溶液中加入酸性物质,利用酸碱中和特性可实现氨气的有效去除。
影响喷淋填料塔效率的因素有塔内液气比、溶液浓度、喷嘴和填料等[6-7]。祝杰等[8]从喷淋塔内的液滴受力入手,推导了气相部分传质系数的计算式,建立了除氨喷淋塔的传质模型,并研究了喷淋密度和空气流速对传质效果的影响。郑文亨等[9]从微观和宏观方面推导出了喷淋室净化空气的效率。JAFARI等[10]发现,0.01%硫酸溶液的除氨效率约90%,最高可达97.92%,远高于除氨效率约70%的纯水。戴圣炎[11]将次氯酸溶液与臭氧联合除氨,氨气的去除效率可达80%以上,次氯酸溶液的有效氯浓度越高,臭氧曝光的时间越长,氨气的去除效果就越好。鞠剑锋等[12]将电解法制备的次氯酸溶液与十六烷基三甲基溴化铵等有机物复合成泡沫型次氯酸水,此种次氯酸溶液对空气中的氨气和硫化氢去除效率达70%。张晓静等[13]将恒压变频水泵应用于纺织厂中空气处理单元的喷淋室并对水泵进行变流量控制,年平均节能达22.8%。陈志强等[14]通过控制吸收塔循环泵的运行,调整喷淋的液气比,达到处理烟气的目的。王昱等[15]设计了一套废气净化的PLC控制系统,通过监测环境参数,控制泵和阀门的运行,除氨效率可达85%,且经济成本量化清晰。
本研究以氨气为处理对象,基于除氨喷淋填料塔的效率模型,用实验数据对效率模型进行验证,再将喷淋溶液循环动态模型与效率模型结合,建立除氨循环喷淋填料塔系统的动态仿真器,并利用动态仿真器模拟以次氯酸溶液为喷淋液体的氨气去除效果,提出喷淋溶液的浓、稀溶液混合配比策略,利用仿真器进行验证和对比分析,以期得到可有效减少次氯酸溶液消耗量和提升除氨效果的喷淋填料塔运行策略。
除氨循环喷淋填料塔系统建模及运行优化控制
Modeling and operational optimization control of packed tower system for ammonia removal by circulating spray
-
摘要: 喷淋填料塔是一种常见除氨设备。将喷淋除氨系统作为研究对象,以次氯酸溶液为喷淋液体,并对系统的优化运行进行研究。基于除氨逆流喷淋填料塔效率模型和系统溶液循环动态模型,建立了除氨循环喷淋填料塔系统仿真器,提出了一种以次氯酸溶液消耗量最小为目标的优化控制策略,通过仿真进行了验证,并与其他2个固定喷淋量控制策略进行了对比。与文献数据相比,喷淋填料塔效率模型的偏差在±3%以内,表明建立的仿真器精度较高。仿真验证结果表明:优化控制策略可使排放气体中氨浓度达到国标GB14554的排放限值要求,而且处理后的废液中氨含量低于其他2个控制策略;在相同的运行时长内,优化控制策略与2个固定喷淋量策略对比,次氯酸的消耗量分别节约34%和18%,说明提出的运行优化控制策略可有效节约次氯酸消耗。本研究提出的优化策略可有效提升除氨喷淋填料塔的运行效率。Abstract: Spray packed tower is a common equipment for the treatment of ammonia gas. The spray packed tower system was taken as the research object to study its optimal operation, with hypochlorous acid solution as the spray liquid.. A simulator of the spray packed tower system was established, based on the efficiency model and the dynamic model of solution circulation. An optimal control strategy was developed to minimize the consumption of hypochlorous acid solution, which was verified by simulation and compared with other two control strategies with fixed spray rate. Compared with the experimental data of the literature, the deviation of the efficiency model of spray packed tower was within ±3%, which indicated that the simulation established in this paper had high accuracy. Simulation results showed that the optimal control strategy could maintain ammonia concentration of discharge gas to satisfy the requirement of GB14554, and the ammonia concentration of the waste solution was lower than the other two control strategies. In the same running time, compared with the two fixed spray rate strategies, the consumption of hypochlorous acid could be saved by 34% and 18% respectively, indicating that the proposed optimal control strategy could effectively save the consumption of hypochlorous acid. The optimization strategy proposed in this study can effectively improve the operation efficiency of the packed column for ammonia removal.
-
-
[1] 戴万能, 高晓根, 计维安, 等. 含硫气田恶臭硫化物性质及阈限值研究[J]. 天然气与石油, 2015, 33(6): 83-89. doi: 10.3969/j.issn.1006-5539.2015.06.021 [2] 石志芳. 奶牛场氨和硫化氢排放特征及氨生物毒性研究[D]. 杨凌: 西北农林科技大学, 2020. [3] HADLOCON LS, MANUZON RB, ZHAO LY. Optimization of ammonia absorption using acid spray wet scrubbers[J]. Transactions of the ASABE, 2014, 57(2): 647-659. [4] 黄翔, 张伟峰, 郑文亨, 等. 利用喷水室对空调新风中有机物和无机物去除的实验研究[J]. 洁净与空调技术, 2004(2): 11-16. doi: 10.3969/j.issn.1005-3298.2004.02.004 [5] LESON G, WINER AM. Biofiltration: an innovative air pollution control technology for VOC emissions[J]. Journal of the Air and Waste Management Association. 1991, 41(8): 1045-54. [6] GUO Y, NIU Z, LIN W. Comparison of removal efficiencies of carbon dioxide between aqueous ammonia and NaOH solution in a fine spray tower[J]. Energy Procedia, 2011, 4(1): 512-518. [7] 郑毅, 赵祥迪, 杨帅, 等. 填料塔-文丘里耦合洗消设备研发与H2S洗消效率分析[J]. 中国安全生产科学技术, 2020, 16(12): 111-115. [8] 祝杰, 吴振元, 叶世超, 等. 喷淋塔传质特性的实验与模型研究[J]. 环境工程学报, 2015(1): 317-322. doi: 10.12030/j.cjee.20150153 [9] 郑文亨, 黄翔, 颜苏芊. 喷水室处理空调新风传质理论的研究[J]. 西安工程科技学院学报, 2004(3): 52-56. [10] JAFARI M J, MATIN A H, RAHMATI A, et al. Experimental optimization of a spray tower for ammonia removal[J]. Atmospheric Pollution Research, 2018, 9(4): 783-790. doi: 10.1016/j.apr.2018.01.014 [11] 戴圣炎. 微酸性电解水与臭氧融合的减臭杀菌技术研究[D]. 杭州: 浙江大学, 2018. [12] 鞠剑峰, 王相伟, 于亚楠, 等. 泡沫型次氯酸水杀菌消毒剂的制备及性能[J]. 广东化工, 2020, 47(10): 7-8. doi: 10.3969/j.issn.1007-1865.2020.10.005 [13] 张晓静, 王仕元, 周义德, 等. 纺织空调喷淋系统恒压变频控制设计运行探讨[J]. 棉纺织技术, 2020, 48(3): 17-21. doi: 10.3969/j.issn.1001-7415.2020.03.006 [14] 陈志强, 傅钧, 刘卫华, 等. 烟气脱硫系统控制策略[J]. 水利电力机械, 2007(6): 9-11. [15] 王昱, 吴鹏, 曾志雄, 等. 规模化猪舍废气复合净化系统设计与试验[J]. 农业机械学报, 2020, 51(4): 344-352. doi: 10.6041/j.issn.1000-1298.2020.04.039 [16] DING T, XUAN X T, LI J, et al. Disinfection efficacy and mechanism of slightly acidic electrolyzed water on Staphylococcus aureus in pure culture[J]. Food Control, 2016, 60: 505-510. doi: 10.1016/j.foodcont.2015.08.037 [17] WEI C, ZHI W Z, ZHENG X S, et al. Efficiency of slightly acidic electrolyzed water for inactivation of Salmonella enteritidis and its contaminated shell eggs[J]. International Journal of Food Microbiology, 2009, 130(2): 88-93. doi: 10.1016/j.ijfoodmicro.2008.12.021 [18] 陈寿椿. 重要无机化学反应[J]. 上海:上海科学技术出版社, 1994: 1883-1584. [19] 徐崇嗣. 塔填料产品及技术手册[J]. 北京:化学工业出版社, 1995: 637-638. [20] 童志权. 大气污染控制工程[J]. 北京:机械工业出版社, 2006: 191-193. [21] 王卫东, 齐国庆, 黄其成, 等. 化学填料塔脱除恶臭气体工艺研究[J]. 石油化工应用, 2010, 29(9): 10-12. doi: 10.3969/j.issn.1673-5285.2010.09.003 [22] ZHU J, ZHAO P, ZHANG Q, et al. Modeling and experimental studies on chemical absorption of sulphur dioxide with ethylenediamine-phosphoric acid solution in a θ-ring packed tower for purification of flue gas[J]. Separation and Purification Technology, 2021, 255: 117764. doi: 10.1016/j.seppur.2020.117764 [23] 中华人民共和国国家标准. GB14554-93. 恶臭污染物排放标准[S]. 北京: 中国标准出版社, 1993. [24] 孙远韬, 章增增, 张氢, 等. 裂纹扩展寿命多失效模式可靠度的序列二次规划计算方法研究[J]. 机械强度, 2019, 41(5): 1090-1095. doi: 10.16579/j.issn.1001.9669.2019.05.013