-
短程硝化-厌氧氨氧化是一种高效的生物脱氮技术,具有无需外源添加碳源、污泥产量小、曝气能耗低、脱氮效率高的特点[1-2],而如何快速达到稳定的短程硝化效果是限制该技术推广的主要问题之一[3]。实现短程硝化的关键是抑制亚硝酸盐氧化细菌(nitrite-oxidizing bacteria,NOB)。为实现NOB的长期抑制,达到亚硝酸盐的稳定积累,往往需要多种控制手段的结合,包括低溶解氧(<2 mg·L−1)、高温(30~40 ℃)、高游离氨(free ammonia,FA) (1~10 mg·L−1)、高游离亚硝酸(free nitrous acid,FNA) (0.02~0.4 mg·L−1)等[4]。此外,优化反应器结构、外加磁场/超声波、添加化学试剂等方法均可强化短程硝化工艺[5]。目前高氨氮(
${\rm{NH}}_4^{+} $ -N为500~2 000 mg·L−1)废水可以实现较为稳定的短程硝化效果,而以城市废水为代表的低氨氮废水仍然较难实现短程硝化且稳定性不强。因此,寻找更为有效的短程硝化启动方法对处理城市废水至关重要。自诱导物-2(autoinducer-2,AI-2)是群体感应(quorum sensing,QS)信号分子的一种,负责细菌间的种间通讯,并通过调整相关基因的表达来促进胞外聚合物(extracellular polymeric substances,EPS)的产生,调节群落结构和菌群活性,进而影响细菌的生理功能。利用AI-2介导的QS系统被认为是废水处理中一种很有前途的调控方法。AI-2参与了生物膜的形成[6],降低AI-2的浓度可以有效控制膜生物污染[7-8]。作为AI-2的重要组成成分,硼的加入能够触发AI-2介导的QS,提高系统的处理效果。在颗粒污泥中加入硼,加速了颗粒污泥的生长,改善了SBR的沉降性能,增加了生物量,且颗粒污泥中AI-2的活性明显提高[9]。添加硼也能够实现厌氧氨氧化反应器的快速启动,并可显著促进厌氧氨氧化菌(anammox bacteria,An AOB)的富集,促进EPS分泌进而形成粒径更大、结构更紧密的An AOB颗粒污泥[10-11]。以上的研究结果表明,利用硼促进细菌AI-2介导的QS系统具有成为一种高效的调控策略的潜力。
为了快速获得稳定的短程硝化效果,实现稳定的亚硝酸盐积累,确保产生足够的底物用于厌氧氨氧化,本研究探究了硼对硝化细菌AI-2类QS系统的影响,考察了不同质量浓度的硼酸对亚硝酸盐富集的影响,并结合硝化细菌丰度的变化分析了影响机制,以期为短程硝化工艺的快速启动提供参考。
硼对短程硝化工艺快速启动的影响
Effect of Boron on rapid start-up of shortcut nitrification process
-
摘要: 针对当前低氨氮废水较难实现短程硝化的问题,通过向3个反应器中添加不同质量浓度的硼酸(自诱导物-2(autoinducer-2,AI-2)的活化因子),研究其对自养硝化污泥系统群体感应(quorum sensing,QS)的影响,以实现短程硝化系统的快速启动。结果表明,当进水
${{\rm{NH}}_4^{+} }$ -N质量浓度为400 mg·L−1时,低硼酸组和高硼酸组都快速实现了稳定的短程硝化效果,但对照组的硝化效果仍无明显变化。与此同时,低硼酸组和高硼酸组的胞外聚合物(extracellular polymeric substances,EPS)含量较对照组分别增加了30.46%和61.61%,EPS中蛋白质所占比重增加,以色氨酸为代表的疏水性氨基酸增加。此外,低硼酸组和高硼酸组的AI-2质量浓度分别是对照组的3倍和4倍。以上研究结果说明硼酸可促进AI-2介导的QS,从而帮助系统快速实现短程硝化。Abstract: Aiming at the current problem that it is difficult to achieve short-cut nitrification of low ammonia nitrogen wastewater, the effects of different concentrations of boric acid (the activation factor of autoinducer-2 (AI-2)) adding into three reactors on quorum sensing (QS) of autotrophic nitrification sludge system were studied to realize the quick start-up of the shortcut nitrification system. The results showed that when the concentration of${\rm{NH}}_4^{+} $ -N was 400 mg·L−1, both the low and high boric acid groups quickly achieved stable short-cut nitrification, but no significant change occurred in the nitrification effect of the control group. At the same time, compared with the control group, the content of extracellular polymeric substances (EPS) in the low and high boric acid groups increased by 30.46% and 61.61%, respectively. The proportion of protein in EPS increased, and the hydrophobic amino acids represented by tryptophan increased. In addition, AI-2 concentrations in the low-boric acid and high-boric acid groups were three and four times as high as that in the control group, respectively. In summary, boric acid can promote AI-2 mediated QS, thus help the system quickly realize short-cut nitrification.-
Key words:
- Boron /
- quorum sensing /
- shortcut nitrification /
- AI-2
-
表 1 50 d后3组反应器中自养硝化污泥的特性
Table 1. Characteristics of autotrophic nitrification sludge in three groups of reactors after 50 d
组别 初始
MLSS/(g·L−1)实验末期
MLSS/(g·L−1)实验末期
MLVSS/(g·L−1)实验末期
VSS/SS平均
ESS/(g·(L·d)−1)平均生长
速率/(g·(L·d)−1)对照组 2.13 ± 0.05 3.11 ± 0.03 1.86 ± 0.08 0.597 0.15 0.130 低硼酸组 2.13 ± 0.05 3.57 ± 0.07 2.33 ± 0.01 0.652 0.12 0.148 高硼酸组 2.13 ± 0.05 3.62 ± 0.06 2.39 ± 0.04 0.661 0.13 0.160 表 2 3个A/O反应器PN/PS值
Table 2. PN/PS values of EPS in the three groups of reactors
组别 SMP LB TB 15 d 30 d 50 d 15 d 30 d 50 d 15 d 30 d 50 d 对照组 0.91 1.27 1.64 0.92 1.00 1.04 1.16 1.25 1.31 低硼酸组 1.31 2.04 1.97 1.02 0.99 0.94 1.26 1.32 1.54 高硼酸组 1.35 1.77 2.03 1.02 0.95 0.93 1.30 1.49 1.63 表 3 不同时期3组反应器EPS的EEM图谱峰位置和峰强度
Table 3. Peak positions and intensities of EEM spectra of EPS in three groups of reactor during different periods
组别 A峰 B峰 C峰 D峰 (Ex/Em)
/nm峰强度 (Ex/Em)
/nm峰强度 (Ex/Em)
/nm峰强度 (Ex/Em)
/nm峰强度 初始污泥 355/445 163.495 280/345 2 564.341 230/310 787.594 230/345 698.425 50 d后对照组 355/445 199.238 280/345 2 857.216 230/310 819.167 230/345 897.456 50 d后低硼酸组 355/445 216.951 280/345 3 312.845 230/310 871.534 230/345 917.816 50 d后高硼酸组 355/445 221.338 280/345 3525.259 230/310 983.037 230/345 1065.931 表 4 3组反应器AOB和NOB的相对丰度
Table 4. Relative abundance of AOB and NOB in the three groups of reactors
处理组 AOB的相对
丰度/%Nitrobacter的
相对丰度/%Nitrospira的
相对丰度/%对照组 18.92 0.23 11.26 低硼酸组 18.68 0.24 16.59* 高硼酸组 19.22 0.29 20.37* 注:*表示差异显著,P<0.05。 -
[1] 袁林杰, 袁林江, 陈希, 等. 厌氧氨氧化UASB系统对氨态氮的超量去除机制研究[J]. 中国环境科学, 2021, 41(10): 4686-4694. doi: 10.3969/j.issn.1000-6923.2021.01.001 [2] 左富民, 郑蕊, 隋倩雯, 等. 一体式短程硝化-厌氧氨氧化工艺启动过程的亚硝酸盐调控[J]. 环境科学, 2021, 42(11): 5472-5480. [3] DENG S Y, PENG Y Z, ZHANG L, et al. Advanced nitrogen removal from municipal wastewater via two-stage partial nitrification-simultaneous anammox and denitrification (PN-SAD) process[J]. Bioresource Technology, 2020, 304: 122955. doi: 10.1016/j.biortech.2020.122955 [4] 樊宇菲, 谢弘超, 周慧, 等. 高氨氮废水半短程硝化控制及曝气经济性运行优化[J]. 环境科学学报, 2021, 41(4): 1275-1282. [5] 汪涛, 袁路子, 罗正, 等. 短程硝化工艺强化方法研究进展[J]. 工业水处理, 2020, 40(7): 1-5. [6] XU H, LIU Y. Control of microbial attachment by inhibition of ATP and ATP-mediated autoinducer-2[J]. Biotechnology and Bioengineering, 2010, 107(1): 31-36. doi: 10.1002/bit.22796 [7] ZHANG X, LEE K, YU H, et al. Photolytic quorum quenching: A new anti-biofouling strategy for membrane bioreactors[J]. Chemical Engineering Journal, 2019, 378: 122235. doi: 10.1016/j.cej.2019.122235 [8] LEE K, KIM Y W, LEE S, et al. Stopping autoinducer-2 chatter by means of an indigenous bacterium (Acinetobacter sp DKY-1): A new antibiofouling strategy in a membrane bioreactor for wastewater treatment[J]. Environmental Science & Technology, 2018, 52(11): 6237-6245. [9] ZHANG S H, YU X, GUO F, et al. Effect of interspecies quorum sensing on the formation of aerobic granular sludge[J]. Water Science and Technology, 2011, 64(6): 1284-1290. doi: 10.2166/wst.2011.723 [10] 吴桂荣. AI-2活化因子(硼)对厌氧氨氧化反应器污泥颗粒化及菌群结构的影响[D]. 广州: 广州大学, 2018. [11] 苏一魁, 吴桂荣, 荣宏伟, 等. 硼对厌氧氨氧化反应器启动过程及菌群结构的影响[J]. 中国给水排水, 2019, 35(13): 6-10. [12] SMOLDERS G J, VAN DER MEIJ J, VAN LOOSDRECHT M C, et al. Stoichiometric model of the aerobic metabolism of the biological phosphorus removal process[J]. Biotechnology and Bioengineering, 1994, 44(7): 837-848. doi: 10.1002/bit.260440709 [13] 任杰辉, 程文, 万甜, 等. 缓冲液盐度对热提取活性污泥胞外聚合物的影响[J]. 环境科学学报, 2018, 38(8): 3054-3060. [14] GERHARDT P. Methods for General and Molecular Bacteriology[M]. Washington, D. C. : American Society for Microbiology, 1994. [15] 胡惠秩. 常/低温下AHLs类群体感应信号分子对SBBR系统影响的研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. [16] ZHU L, QI H Y, LV M L, et al. Component analysis of extracellular polymeric substances (EPS) during aerobic sludge granulation using FTIR and 3D-EEM technologies[J]. Bioresource Technology, 2012, 124: 455-459. doi: 10.1016/j.biortech.2012.08.059 [17] 黄晓遇, 谭炳琰, 李淳峰, 等. 柱前衍生-固相萃取-高效液相色谱荧光测定生物脱氮反应器中痕量信号分子AI-2[J]. 环境工程学报, 2019, 13(1): 109-115. doi: 10.12030/j.cjee.201808042 [18] HU H, HE J, LIU J, et al. Biofilm activity and sludge characteristics affected by exogenous N-acyl homoserine lactones in biofilm reactors[J]. Bioresource Technology, 2016, 211: 339-347. doi: 10.1016/j.biortech.2016.03.068 [19] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [20] HE S, ZHANG Y, NIU Q, et al. Operation stability and recovery performance in an anammox EGSB reactor after pH shock[J]. Ecological Engineering, 2016, 90: 50-56. doi: 10.1016/j.ecoleng.2016.01.084 [21] ANTHONISEN A C, LOEHR R C, PRAKASAM T B, et al. Inhibition of nitrification by ammonia and nitrous acid[J]. Journal Water Pollution Control Federation, 1976, 48(5): 835-852. [22] VADIVELU V M, YUAN Z, FUX C, et al. The inhibitory effects of free nitrous acid on the energy generation and growth processes of an enriched nitrobacter culture[J]. Environmental Science & Technology, 2006, 40(14): 4442-4448. [23] CHEN H, LI A, CUI D, et al. N-Acyl-homoserine lactones and autoinducer-2-mediated quorum sensing during wastewater treatment[J]. Applied Microbiology and Biotechnology, 2018, 102(3): 1119-1130. doi: 10.1007/s00253-017-8697-3 [24] JIA F X, YANG Q, LIU X H, et al. Stratification of extracellular polymeric substances (EPS) for aggregated anammox microorganisms[J]. Environmental Science & Technology, 2017, 51(6): 3260-3268. [25] SHI Y, HUANG J, ZENG G, et al. Exploiting extracellular polymeric substances (EPS) controlling strategies for performance enhancement of biological wastewater treatments: An overview[J]. Chemosphere, 2017, 180: 396-411. doi: 10.1016/j.chemosphere.2017.04.042 [26] SU X Y, ZHANG Z G. Structural characteristics of extracellular polymeric substances (EPS) in membrane bioreactor and their adsorptive fouling[J]. Water Science and Technology, 2018, 77(6): 1537-1546. doi: 10.2166/wst.2018.033 [27] HOU X, LIU S, ZHANG Z. Role of extracellular polymeric substance in determining the high aggregation ability of anammox sludge[J]. Water Research, 2015, 75: 51-62. doi: 10.1016/j.watres.2015.02.031 [28] YUAN S J, SUN M, SHENG G P, et al. Identification of key constituents and structure of the extracellular polymeric substances excreted by Bacillus megaterium TF10 for their flocculation capacity[J]. Environmental Science & Technology, 2011, 45(3): 1152-1157. [29] LV J, WANG Y, ZHONG C, et al. The effect of quorum sensing and extracellular proteins on the microbial attachment of aerobic granular activated sludge[J]. Bioresource Technology, 2014, 152: 53-58. doi: 10.1016/j.biortech.2013.10.097 [30] ZHANG F, YANG H, GUO D, et al. Effects of biomass pyrolysis derived wood vinegar (WVG) on extracellular polymeric substances and performances of activated sludge[J]. Bioresource Technology, 2019, 274: 25-32. doi: 10.1016/j.biortech.2018.11.064 [31] COBLE P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry, 1996, 51(4): 325-346. doi: 10.1016/0304-4203(95)00062-3 [32] LIU Y Q, LIU Y, TAY J H. The effects of extracellular polymeric substances on the formation and stability of biogranules[J]. Applied Microbiology and Biotechnology, 2004, 65(2): 143-148. [33] ZHENG M, LIU Y C, XIN J, et al. Ultrasonic treatment enhanced ammonia-oxidizing bacterial (AOB) activity for nitritation process[J]. Environmental Science & Technology, 2016, 50(2): 864-871. [34] XU H, LIU Y. Reduced microbial attachment by D-amino acid-inhibited AI-2 and EPS production[J]. Water Research, 2011, 45(17): 5796-5804. doi: 10.1016/j.watres.2011.08.061 [35] SUN S P, LIU X, MA B Y, et al. The role of autoinducer-2 in aerobic granulation using alternating feed loadings strategy[J]. Bioresource Technology, 2016, 201: 58-64. doi: 10.1016/j.biortech.2015.11.032 [36] ZHAO Z C, XIE G J, LIU B F, et al. A review of quorum sensing improving partial nitritation-anammox process: Functions, mechanisms and prospects[J]. Science of the Total Environment, 2021, 765: 142703. doi: 10.1016/j.scitotenv.2020.142703 [37] SUN Y, GUAN Y, WANG D, et al. Potential roles of acyl homoserine lactone based quorum sensing in sequencing batch nitrifying biofilm reactors with or without the addition of organic carbon[J]. Bioresource Technology, 2018, 259: 136-145. doi: 10.1016/j.biortech.2018.03.025 [38] FENG Z, SUN Y, LI T, et al. Operational pattern affects nitritation, microbial community and quorum sensing in nitrifying wastewater treatment systems[J]. Science of the Total Environment, 2019, 677: 456-465. doi: 10.1016/j.scitotenv.2019.04.371