-
随着海水入侵、海水利用(海水冲厕、海水冷却)和工业废水(造纸、发酵、制药、食品生产和采矿等)排放,产生了大量含硫酸盐废水(简称含硫废水),使得污水生物处理受到较大影响[1]。为此,利用硫酸盐还原菌(sulfate-reducing bacteria,SRB)和硫氧化菌(sulfur-oxidizing bacteria,SOB),研究者们开发出了各种含硫废水处理工艺,包括硫酸盐还原沉淀重金属[2-3]、硫自养反硝化工艺[4-5]、自养反硝化和硝化一体化工艺(sulfate reduction,autotrophic denitrification and nitrification integrated,SANI®)[6-7]。相比这些工艺,新近开发的硫循环耦合反硝化除磷工艺(DS-EBPR)系统作为含硫废水脱氮除磷新工艺,同时利用了2种微生物,将硫(S)、碳(C)、氮(N)和磷(P)循环进行了耦合,从而实现了C、N、P源污染的共同去除[8-9]。
DS-EBPR系统的运行主要分为2个阶段(厌氧/缺氧):在厌氧阶段,SRB与SOB协同作用吸收挥发性脂肪酸(volatile fatty acid,VFA)并储存为聚羟基脂肪酸酯(polyhydroxyalkanoates,PHA),SRB将硫酸盐还原为聚硫,SOB则进行糖原的酵解与聚磷的释放;在缺氧阶段,SOB则会利用硝酸盐为电子受体,氧化PHA与聚硫,生成的能量用于生物质的生长、糖原的生成以及聚磷的储存。通过定时排除富磷污泥,可实现从污水中去除磷的目的[10]。相比于传统的生物强化除磷(EBPR)工艺,DS-EBPR工艺更能适应高盐度、高硫酸盐、高温的环境,同时可减少剩余污泥产量,满足了日益增长的含硫废水中脱氮除磷的需求[11]。
然而,在生物除磷过程中,存在一类微生物——聚糖菌(glycogen-accumulating organisms,GAOs),会与除磷细菌竞争碳源但不吸收磷酸盐[12]。在碳源不足的情况下,除磷细菌会逐渐丧失优势菌群的地位,导致DS-EBPR系统除磷效能波动甚至下降。如何有效抑制GAOs的生长,提升除磷细菌的活性,是每一种生物除磷工艺稳定运行的关键[13]。在传统的EBPR系统中,已经有学者们研究了各种参数,如C/P比、pH、温度等对聚磷菌(phosphate-accumulating organisms,PAOs)与GAOs竞争关系的影响[14-15],但DS-EBPR工艺不同于传统的EBPR工艺,其功能种群硫细菌(SRB和SOB)区别于传统的PAOs,与GAOs相互竞争的有关影响因素尚缺乏研究。因此,本研究首次向已富集有聚糖菌的DS-EBPR系统中投加单质硫,探究单质硫短期冲击对SRB、SOB与GAOs竞争关系的影响。
单质硫冲击对含硫废水中硫细菌与聚糖菌竞争关系的影响
Effects of elemental sulfur shock on the competition between sulfur bacteria and glycogen-accumulating organisms in sulfate-containing wastewater
-
摘要: 聚糖菌的富集会与硫循环耦合反硝化除磷系统(denitrifying sulfur conversion-associated enhanced biological phosphorous removal,DS-EBPR)内功能种群微生物——硫细菌发生竞争,从而导致除磷效果波动。因此,首先对母反应器中微生物进行了长期驯化,然后通过向批次实验小反应器中投加单质硫,研究单质硫短期冲击对含硫废水中硫细菌与聚糖菌竞争关系的影响。结果表明,经过长期驯化,在母反应器中发现了硫细菌与聚糖菌共存的现象;而短期冲击实验结果表明,在单个周期反应过程中,虽然单质硫的投加对微生物内源物质(聚羟基脂肪酸酯、糖原)转化量、氮磷去除效果影响不大,但其可以提高硫细菌的活性,增加硫转化量,使得硫细菌在与聚糖菌的竞争中取得优势地位。Abstract: Glycogen-accumulating organisms (GAOs) can compete with the functional microorganism of denitrifying sulfur conversion-associated enhanced biological phosphorous removal (DS-EBPR) system, i.e. sulfur bacteria, and lead to the fluctuations of phosphorus removal performance. Therefore, this study firstly cultivated the sulfur bacteria in the parent reactor during the long-term operation, and then conducted the experiments of the short-term shock effects of adding elemental sulfur on competition between sulfur bacteria and GAOs in batch tests. The results showed that sulfur bacteria and GAOs could coexist in one ecosystem during the long-term operation. At the same time, the short-term batch tests indicated that although adding elemental sulfur insignificantly affected the production of endogenous substances (such as PHA, glycogen), while it could improve the activity of sulfur bacteria and increase sulfur conversion, subsequently lead to the dominance of sulfur bacteria during the competition with GAOs.
-
表 1 以乙酸为碳源,本研究不同反应器与相关代谢模型中碳硫转化、磷释放和内源物质转化比较
Table 1. Comparison of the anaerobic carbon sulfur transformations, P release, endogenous substance conversion with the studied reactors and various metabolic models, with acetate as carbon sources
mmol·mmol−1 反应器 碳源 P/VFA polyS/VFA Gly/VFA PHA/VFA PHB/VFA PHV/VFA R1 HAc 0.022 −0.14 0.47 0.78 0.71 0.07 R2 HAc 0.001 −1.16 1.03 2.01 1.26 0.75 R3 HAc 0.027 −2.12 1.43 2.17 1.69 0.48 R4 HAc — — — — — — 母反应器 HAc 0.003 0.13 0.70 1.42 1.08 0.34 DS-EBPR系统[23] HAc 0.24 0.16 0.06 0.58 0.58 0 DPAO代谢模型[24] HAc 0.16 0 0.50 1.37 1.10 0.27 DGAO代谢模型[25] HAc 0 0 1.15 1.87 1.40 0.47 GAOs代谢模型[26] HAc 0 0 1.12 1.86 1.36 0.46 PAO代谢模型[16] HAc 0.50 0 0.50 1.33 1.33 0 -
[1] 蒋玲燕, 周振, 王英俊, 等. 硫化物对污水处理厂硝化菌活性的抑制作用[J]. 环境工程学报, 2012, 6(11): 4065-4068. [2] 余飞, 万俊锋, 赵雅光, 等. 硫酸盐还原菌SRB除砷的影响因素[J]. 环境工程学报, 2016, 10(7): 3898-3904. doi: 10.12030/j.cjee.201502116 [3] ZHU Y P, WU M, GAO N Y, et al. Removal of antimonate from wastewater by dissimilatory bacterial reduction: Role of the coexisting sulfate[J]. Journal of Hazardous Materials, 2018, 341: 36-45. doi: 10.1016/j.jhazmat.2017.07.042 [4] MORAES B S, SOUZA T S O, FORESTI E. Effect of sulfide concentration on autotrophic denitrification from nitrate and nitrite in vertical fixed-bed reactors[J]. Process Biochemistry, 2012, 47(9): 1395-1401. doi: 10.1016/j.procbio.2012.05.008 [5] 贾妍艳, 李璇, 杨伟明, 等. 硫自养反硝化工艺去除布洛芬[J]. 环境工程学报, 2017, 11(6): 3461-3467. doi: 10.12030/j.cjee.201603018 [6] LAU G N, SHARMA K R, CHEN G H, et al. Integration of sulphate reduction, autotrophic denitrification and nitrification to achieve low-cost excess sludge minimisation for Hong Kong sewage[J]. Water Science and Technology, 2006, 53(3): 227-235. doi: 10.2166/wst.2006.101 [7] WANG J, LU H, CHEN G H, et al. A novel sulfate reduction, autotrophic denitrification, nitrification integrated (SANI) process for saline wastewater treatment[J]. Water Research, 2009, 43(9): 2363-2372. doi: 10.1016/j.watres.2009.02.037 [8] WU D, EKAMA G A, WANG H G, et al. Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated enhanced biological phosphorus removal (EBPR) process[J]. Water Research, 2014, 49: 251-264. doi: 10.1016/j.watres.2013.11.029 [9] 赵晴, 余美, 程娜, 等. 碳硫比和硝酸根投加量对DS-EBPR工艺的影响研究[J]. 水处理技术, 2016, 42(10): 71-75. [10] GUO G, WU D, HAO T W, et al. Functional bacteria and process metabolism of the denitrifying sulfur conversion-associated enhanced biological phosphorus removal (DS-EBPR) system: An investigation by operating the system from deterioration to restoration[J]. Water Research, 2016, 95: 289-299. doi: 10.1016/j.watres.2016.03.013 [11] GUO G, EKAMA G A, WANG Y Y, et al. Advances in sulfur conversion-associated enhanced biological phosphorus removal in sulfate-rich wastewater treatment: A review[J]. Bioresource Technology, 2019, 285: 121303. doi: 10.1016/j.biortech.2019.03.142 [12] LAW Y, KIRKEGAARD R H, COKRO A A, et al. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions[J]. Scientific Reports, 2016, 6(1): 25719. doi: 10.1038/srep25719 [13] OEHMEN A, LEMOS P C, CARVALHO G, et al. Advances in enhanced biological phosphorus removal: From micro to macro scale[J]. Water Research, 2007, 41(11): 2271-2300. doi: 10.1016/j.watres.2007.02.030 [14] LOPEZ-VAZQUEZ C M, OEHMEN A, HOOIJMANS C M, et al. Modeling the PAO-GAO competition: Effects of carbon source, pH and temperature[J]. Water Research, 2009, 43(2): 450-462. doi: 10.1016/j.watres.2008.10.032 [15] 彭党聪, 张晓霞, 樊香妮, 等. 温度对SBR强化生物除磷工艺除磷性能的影响[J]. 环境工程学报, 2016, 10(11): 6106-6110. doi: 10.12030/j.cjee.201506073 [16] SMOLDERS G J F, MEIJ J, LOOSDRECHT M C M, et al. Model of the anaerobic metabolism of the biological phosphorus removal process: Stoichiometry and pH influence[J]. Biotechnology and Bioengineering, 1994, 43(6): 461-470. doi: 10.1002/bit.260430605 [17] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [18] OEHMEN A, KELLER-LEHMANN B, ZENG R J, et al. Optimisation of poly-β-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems[J]. Journal of Chromatography A, 2005, 1070(1/2): 131-136. doi: 10.1016/j.chroma.2005.02.020 [19] JENKINS D, RICHARD M G, DIGGER G T. Manual on the cause and control of activated sludge bulking and foaming[M]. Third. Florida: CRC Press, 2004. [20] JIANG G M, SHARMA K R, GUISASOLA A, et al. Sulfur transformation in rising main sewers receiving nitrate dosage[J]. Water Research, 2009, 43(17): 4430-4440. doi: 10.1016/j.watres.2009.07.001 [21] SAITO T, BRDJANOVIC D, LOOSDRECHT M C M. Effect of nitrite on phosphate uptake by phosphate accumulating organisms[J]. Water Research, 2004, 38(17): 3760-3768. doi: 10.1016/j.watres.2004.05.023 [22] GUO G, WU D, HAO T, et al. Denitrifying sulfur conversion-associated EBPR: The effect of pH on anaerobic metabolism and performance[J]. Water Research, 2017, 123: 687-695. doi: 10.1016/j.watres.2017.07.020 [23] WU D, EKAMA G A, LU H, et al. A new biological phosphorus removal process in association with sulfur cycle[J]. Water Research, 2013, 47(9): 3057-3069. doi: 10.1016/j.watres.2013.03.009 [24] CARVALHO G, LEMOS P C, OEHMEN A, et al. Denitrifying phosphorus removal: Linking the process performance with the microbial community structure[J]. Water Research, 2007, 41(19): 4383-4396. doi: 10.1016/j.watres.2007.06.065 [25] ZENG R J, YUAN Z G, KELLER J. Enrichment of denitrifying glycogen-accumulating organisms in anaerobic/anoxic activated sludge system[J]. Biotechnology and Bioengineering, 2003, 81(4): 397-404. doi: 10.1002/bit.10484 [26] ZENG R J, LOOSDRECHT M C M, YUAN Z G, et al. Metabolic model for glycogen-accumulating organisms in anaerobic/aerobic activated sludge systems[J]. Biotechnology and Bioengineering, 2003, 81(1): 92-105. doi: 10.1002/bit.10455