-
重金属和抗生素污染治理是近几年的研究热点之一。重金属污染主要来源于冶金、电子、农药等行业,具有高毒性、无法降解等特点[1-2]。我国每年有成千上万吨抗生素被用于养殖业和医疗中,其中磺胺类药物(sulfonamide antibiotics, SAs)因其广谱性和质优价廉的优点被广泛使用[3],然而大部分抗生素并不能完全被机体吸收。有研究表明,高达85%~90%抗生素以原药或代谢物形式经排泄物进入环境,对土壤和水体造成严重污染[4]。因此,有效去除磺胺类药物及其代谢产物成为亟需解决的难题。
微生物吸附法能去除多种重金属和难降解有机污染物,且成本较低,应用前景广泛[5]。但微生物在应用时易流失,影响效果,因此,有必要将其固定化处理,提高其活性和抗逆性,延长寿命[6-9]。常用的固定化方法有吸附、交联、包埋以及复合固定法。其中包埋法稳定性高、包菌量大、且对微生物影响较小[10-11]。目前已有通过固定化处理提高微生物处理能力的研究报道。BATOOL等[12]将外生菌属(Exigubacterium sp.)制成固定化小球,发现其对Cr(Ⅵ)的去除率高于85%;而昝逢宇等[13]的研究结果表明,将啤酒酵母固定化后对Cu2+和Cd2+的吸附效果优于未固定的情况。诸多研究表明,固定化处理能提高微生物吸附剂的机械强度,并增强微生物对重金属的耐受能力[14-15]。
木屑表面含有大量的羟基、羧基等官能团,能通过离子交换和氢键吸附作用固定有机污染物和重金属[16-17],在物理结构上具有孔隙率高、比表面积大等特点,能与金属离子发生物理吸附[18],且银叶金合欢木屑属于园林废物,其来源广、可生物降解、环境友好,是固定化微生物载体理想材料之一。本研究选用枯枝落叶作为吸附剂载体材料,不仅低碳环保,也为园林废弃物的资源化利用提供新思路。课题组前期从环境中筛选获得一株菌株,其对重金属Cr(Ⅵ)和SAs同时具有较好耐受和吸附效果。为提高此菌株实际应用价值,本研究采用包埋法将其制备成固定化微生物吸附剂,探讨了其对重金属Cr(Ⅵ)和常见SAs的吸附性能,且进一步将吸附剂应用于电镀废水处理中,以期为水体重金属Cr(Ⅵ)和SAs污染治理提供参考。
固定化微生物吸附剂的制备及其对六价铬和磺胺类抗生素的吸附性能
Preparation of an immobilized microbial adsorbent and its performance on the adsorption of Cr(Ⅵ) and sulfonamide antibiotics
-
摘要: 以银叶金合欢木屑为载体包埋伯克氏菌属(Burkholderia sp.,简称Y12菌)制备固定化微生物吸附剂——木屑-Y12吸附剂(SY12),考察了其对不同磺胺类抗生素和重金属Cr(Ⅵ)的吸附性能。结果表明,SY12能有效吸附水体中的磺胺甲嘧啶 (sulfamerazine, SMZ)、磺胺嘧啶(sulfadiazine, SZ)和磺胺甲噁唑(sulfamethoxazole, SMX),且对5 mg·L−1 SZ的去除率最高,为47.9%。SY12对Cr(Ⅵ)也有高效吸附效果,其中对1 mg·L−1 Cr(Ⅵ)吸附效果最佳,去除率达96.7%,吸附机制以化学吸附为主。SY12还能同时去除Cr(Ⅵ)–磺胺类药物((sulfonamide antibiotics, SAs)复合污染,但复合污染体系中,SY12对SAs的吸附能力略微下降,对Cr(Ⅵ)的去除能力却增强。此外,SY12能有效去除酸性电镀废水中的Cr;热干燥处理的木屑更有利于吸附Cr(Ⅵ)。Abstract: An immobilized microbial adsorbent was prepared through embedding Burkholderia sp. (strain Y12) in Acacia sawdust carrier,: Na-alginate immobilized sawdust and Y12 adsorbent (SY12). The performance on the adsorption of Cr(Ⅵ) and different kinds of sulfonamide antibiotics by SY12 was studied. The results showed that SY12 could effectively remove sulfamerazine (SMZ), sulfadiazine (SZ) and sulfamethoxazole (SMX) from water, of which the highest removal rate of 47.9% occurred for 5 mg·L−1 SZ. SY12 showed a high Cr(Ⅵ) removal rate, and the best adsorption appeared toward 1 mg·L−1 Cr(Ⅵ), the corresponding removal rate was 96.7%, and chemical adsorption dominated Cr(Ⅵ) removal mechanism. SY12 could also eliminate Cr(Ⅵ) – SAs composite pollution simultaneously, but in the combined pollution system, the removal capacity of SAs by SY12 slightly decreased, while the removal capacity of Cr(Ⅵ) increased. Another study indicated that SY12 could effectively remove Cr from acidic electroplating wastewater. In addition, the sawdust treated by heat drying was more conducive to Cr(Ⅵ) adsorption, and all the removal rates decreased with the increase of pollutant mass concentration.
-
Key words:
- immobilization /
- microbial adsorbent /
- heavy metals /
- antibiotics /
- composite pollution
-
表 1 动力学模型拟合参数
Table 1. kinetic model parameters
吸附剂 qe,exp 伪一级动力学方程 伪二级动力学方程 k1 qe R2 k2 qe R2 SMZ 0.091 0.082 0.620 0.5483 0.093 11.590 0.8356 SMX 0.055 0.046 0.367 0.9876 0.049 10.034 0.9963 SZ 0.067 0.055 0.500 0.6591 0.059 11.110 0.8017 表 2 动力学模型参数
Table 2. kinetic model parameters
吸附剂 qe,exp 伪一级动力学方程 伪二级动力学方程 k1 qe R2 k2 qe R2 SY12 96.7 0.094 95.84 0.938 2 0.001 97.56 0.998 5 -
[1] 王浩洋. 磁性壳聚糖/板栗壳纤维复合材料处理含铬废水的研究[J]. 广东化工, 2020, 47(13): 96-98. doi: 10.3969/j.issn.1007-1865.2020.13.043 [2] 刘晓凤, 徐鑫, 陈瑞锋, 等. 木屑吸附溶液中重金属离子的试验研究[J]. 太原理工大学学报, 2019, 50(4): 492-497. doi: 10.16355/j.cnki.issn1007-9432tyut.2019.04.013 [3] LIU J L, WONG M H. Pharmaceuticals and personal care products (Ppcps): A review on environmental contamination in China[J]. Environment International, 2013, 59: 208-224. doi: 10.1016/j.envint.2013.06.012 [4] RADKE M, LAUWIGI C, HEINKELE G, et al. Fate of the antibiotic sulfamethoxazole and its two major human metabolites in a water sediment test[J]. Environmental Science & Technology, 2009, 43(9): 3135-3141. [5] 刘金香, 葛玉杰, 谢水波, 等. 改性微生物吸附剂在重金属废水处理中的应用进展[J]. 微生物学通报, 2020, 47(3): 941-951. doi: 10.13344/j.microbiol.china.190507 [6] HUANG S W, CHEN X, WANG D D, et al. Bio-reduction and synchronous removal of hexavalent chromium from aqueous solutions using novel microbial cell/algal-derived biochar particles: Turning an environmental problem into an opportunity[J]. Bioresource Technology, 2020, 309: 123304. doi: 10.1016/j.biortech.2020.123304 [7] CATANIA V, LOPRESTI F, CAPPELLO S, et al. Innovative, ecofriendly biosorbent-biodegrading biofilms for bioremediation of oil- contaminated water[J]. New Biotechnology, 2020, 58(25): 25-31. [8] DZIONEK A, WOJCIESZYNSKA D, GUZIK U. Natural carriers in bioremediation: A review[J]. Electronic Journal of Biotechnology, 2016, 23: 28-36. doi: 10.1016/j.ejbt.2016.07.003 [9] 黄真真, 陈桂秋, 曾光明, 等. 固定化微生物技术及其处理废水机制的研究进展[J]. 环境污染与防治, 2015, 37(10): 77-85. doi: 10.15985/j.cnki.1001-3865.2015.10.015 [10] 王广金, 褚良银, 杨平, 等. 固定化微生物技术及其在废水处理中的应用[J]. 重庆环境科学, 2003(12): 171-173. [11] 高华崇, 乔丽丽, 尹莉, 等. 包埋微生物固定化载体的结构性能研究[J]. 能源环境保护, 2017, 31(1): 29-33. doi: 10.3969/j.issn.1006-8759.2017.01.009 [12] BATOOL R, QURRAT-UL-AIN K, NAEEM A. Comparative study of Cr(VI) removal by Exiguobacterium sp. in free and immobilized forms[J]. Bioremediation Journal, 2014, 18(4): 317-327. doi: 10.1080/10889868.2014.938722 [13] 昝逢宇, 霍守亮, 席北斗, 等. 非固定化和固定化啤酒酵母对Cd(Ⅱ)和Cu(Ⅱ)的吸附特性研究[J]. 环境工程学报, 2011, 5(11): 2473-2480. [14] 余关龙, 彭海渊, 王世涛, 等. 固定化生物吸附剂对Cd(Ⅱ)的去除性能及机理[J]. 化工进展, 2021, 40(5): 2882-2892. doi: 10.16085/j.issn.1000-6613.2020-1258 [15] TSEKOVA K, TODOROVA D, DENCHEVA V, et al. Biosorption of copper(II) and cadmium(II) from aqueous solutions by free and immobilized biomass of Aspergillus Niger[J]. Bioresource Technology, 2010, 101(6): 1727-1731. doi: 10.1016/j.biortech.2009.10.012 [16] SIDIRAS D, BATZIAS F, SCHROEDER E, et al. Dye adsorption on autohydrolyzed pine sawdust in batch and fixed-bed systems[J]. Chemical Engineering Journal, 2011, 171(3): 883-896. doi: 10.1016/j.cej.2011.04.029 [17] 张汝壮. 功能化改性木屑材料的制备及其吸附/光催化性能研究[D]. 上海: 华东理工大学, 2015. [18] 马迎春. 固定化生物吸附剂对重金属铜的吸附性能研究[D]. 长沙: 湖南大学, 2013. [19] 檀笑, 曾洁仪, 张逸凡, 等. 一株典型伯克氏菌对Cr(Ⅵ)/Cu(Ⅱ)复合污染的吸附转化[J]. 环境污染与防治, 2019, 41(08): 932-937. doi: 10.15985/j.cnki.1001-3865.2019.08.013 [20] 曾洁仪, 曾苏杭, 纪梦钿, 等. Sakaguchia Cladiensis对磺胺甲嘧啶/铜复合污染中抗生素的降解[J]. 中国环境科学, 2019, 39(12): 5293-5300. [21] 文晓凤, 杜春艳, 袁瀚宇, 等. 改性磁性纳米颗粒固定内生菌Bacillus Nealsonii吸附废水中Cd(Ⅱ)的特性研究[J]. 环境科学学报, 2016, 36(12): 4376-4383. [22] 赵涛, 蒋成爱, 丘锦荣, 等. 皇竹草生物炭对水中磺胺类抗生素吸附性能研究[J]. 水处理技术, 2017, 43(4): 56-61. doi: 10.16796/j.cnki.1000-3770.2017.04.013 [23] ZHOU A X, ZHANG Y L, LI R, et al. Adsorptive removal of sulfa antibiotics from water using spent mushroom substrate, an agricultural waste[J]. Desalination and Water Treatment, 2016, 57(1): 388-397. [24] BAJPAI A K, RAJPOOT M, MISHRA D D. Studies on the correlation between structure and adsorption of sulfonamide compounds[J]. Colloids And Surfaces A:Physicochemical And Engineering Aspects, 2000, 168(3): 193-205. [25] 谢胜, 李娟英, 赵庆祥. 磺胺类抗生素的活性炭吸附过程研究[J]. 环境工程学报, 2012, 6(2): 483-488. [26] TAPPE W, ZARFL C, KUMMER S, et al. Growth-inhibitory effects of sulfonamides at different pH: Dissimilar susceptibility patterns of a soil bacterium and a test bacterium used for antibiotic assays[J]. Chemosphere, 2008, 72(5): 836-843. doi: 10.1016/j.chemosphere.2008.02.041 [27] 吕慧峰, 翟建平, 李琴, 等. 水杉锯末对三价铬离子的吸附机理研究[J]. 环境科学与技术, 2007(8): 24-25. doi: 10.3969/j.issn.1003-6504.2007.08.009 [28] 俞伟, 赵思钰, 王宇航, 等. 苜蓿生物炭对磺胺甲恶唑的吸附机理研究[J]. 西北大学学报(自然科学版), 2022, 52(1): 115-127. doi: 10.16152/j.cnki.xdxbzr.2022-01-014 [29] ZHENG H, WANG Z Y, ZHAO J, et al. Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures[J]. Environmental Pollution, 2013, 181: 60-67. doi: 10.1016/j.envpol.2013.05.056 [30] 李猛, 张鸿郭, 周子倩, 等. 固定化Srb处理低浓度含铬废水[J]. 环境工程, 2016, 34(4): 20-24. doi: 10.13205/j.hjgc.201604005 [31] 赵锐. 耐Cr(Ⅲ)微生物的固定化及吸附Cr(Ⅲ)的特性研究[D]. 西安: 陕西科技大学, 2019. [32] JING R, KJELLERUP B V. Biogeochemical cycling of metals impacting by microbial mobilization and immobilization[J]. Journal Of Environmental Sciences (China), 2018, 66: 146-154. doi: 10.1016/j.jes.2017.04.035 [33] MA P, ZHANG D. Immobilized lentinus edodes residue as absorbent for the enhancement of cadmium adsorption performance[J]. Frontiers of Environmental Science & Engineering, 2012, 6(4): 498-508. [34] ZHOU W Z, LIU D S, ZHANG H O, et al. Bioremoval and recovery of cd(II) by pseudoalteromonas sp. SCSE709-6: Comparative study on growing and grown cells[J]. Bioresource Technology, 2014, 165: 145-151. doi: 10.1016/j.biortech.2014.01.119 [35] TODOROVA K, VELKOVA Z, STOYTCHEVA M, et al. Novel composite biosorbent from bacillus cereus for heavy metals removal from aqueous solutions[J]. Biotechnology, Biotechnological Equipment, 2019, 33(1): 730-738. doi: 10.1080/13102818.2019.1610066 [36] MAO F, LIU X H, WU K, et al. Biodegradation of sulfonamides by shewanella oneidensis Mr-1 and shewanella sp strain Mr-4[J]. Biodegradation, 2018, 29(2): 129-140. doi: 10.1007/s10532-017-9818-5 [37] OZDEMIR S, KILINC E, POLI A, et al. Biosorption of Cd, Cu, Ni, Mn and Zn from aqueous solutions by thermophilic bacteria, Geobacillus toebii sub. sp decanicus and Geobacillus thermoleovorans sub. sp stromboliensis: Equilibrium, kinetic and thermodynamic studies[J]. Chemical Engineering Journal, 2009, 152(1): 195-206. doi: 10.1016/j.cej.2009.04.041 [38] SHENG P X, WEE K H, TING Y P, et al. Biosorption of copper by immobilized marine algal biomass[J]. Chemical Engineering Journal, 2008, 136(2-3): 156-163. doi: 10.1016/j.cej.2007.03.033 [39] 常帅帅, 张学杨, 王洪波, 等. 木屑生物炭的制备及其对Pb(Ⅱ)的吸附特性研究[J]. 生物质化学工程, 2020, 54(3): 37-44. doi: 10.3969/j.issn.1673-5854.2020.03.006 [40] ALI R M, HAMAD H A, HUSSEIN M M, et al. Potential of using green adsorbent of heavy metal removal from aqueous solutions: Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis[J]. Ecological Engineering, 2016, 91: 317-332. doi: 10.1016/j.ecoleng.2016.03.015 [41] KRISHNAN K A, ANIRUDHAN T S. A preliminary examination of the adsorption characteristics of Pb(II) ions using sulphurised activated carbon prepared from bagasse pith[J]. Indian Journal of Chemical Technology, 2002, 9(1): 32-40. [42] WALLIS S C, GAHAN L R, CHARLES B G, et al. Copper(II) complexes of the fluoroquinolone antimicrobial ciprofloxacin. Synthesis, x-ray structural characterization, and potentiometric study[J]. Journal of Inorganic Biochemistry, 1996, 62(1): 1-16. doi: 10.1016/0162-0134(95)00082-8 [43] 宋洁. 铬(Ⅵ)的微生物转化研究进展[J]. 生物学教学, 2015, 40(2): 43-44. [44] MOHANTY K, JHA M, MEIKAP B C, et al. Biosorption of Cr(VI) from aqueous solutions by eichhornia crassipes[J]. Chemical Engineering Journal (Lausanne, Switzerland:1996), 2006, 117(1): 71-77. [45] LAKSHMI S, SUVEDHA K, SRUTHI R, et al. Hexavalent chromium sequestration from electronic waste by biomass of aspergillus carbonarius[J]. Bioengineered, 2020, 11(1): 708-717. doi: 10.1080/21655979.2020.1780828 [46] SANGHI R, SANKARARAMAKRISHNAN N, DAVE B C. Fungal bioremediation of chromates: Conformational changes of biomass during sequestration, binding, and reduction of hexavalent chromium ions[J]. Journal of Hazardous Materials, 2009, 169(1-3): 1074-1080. doi: 10.1016/j.jhazmat.2009.04.056