-
活性蓝19(RB19)是一种蒽醌类染料,具有色彩鲜艳、染色度高、固色率好等特点,常用于纺织工业中。随着近年来生产规模的扩大,印染废水不断排入水体中,由于染料废水可生化性差、成分结构复杂且生物毒性高,因此,常规处理手段对染料废水处理效果差,给生态环境与人体健康造成了严重危害[1-4]。
目前,在众多蒽醌染料废水处理方法中,光催化氧化方法是一种有效的处理手段。龚丹[5]利用光催化TiO2降解蒽醌染料茜素绿,在光催化30 min后,茜素绿的脱色率达100%,紫外可见光谱分析结果表明,可见光区的吸收峰基本消失,染料发色基团和共轭结构均被破坏,处理后的废水矿化度高,可生化性较好。为进一步增强光催化的降解效果,压缩处理成本,部分学者在光催化体系中引入过二硫酸盐(PS),以提高体系氧化能力。作为电子受体的PS被活化后,不仅可以产生硫酸根自由基、羟基自由基等活性物质并与污染物发生反应,而且在一定程度上延长了光催化剂表面电子-空穴对的存活寿命,提高了污染物降解效果。GAO等[6]采用vis/MIL-53(Fe)/PS体系降解AO7,90 min内,染料去除率达82%,与单独光催化相比,效率提高58%,极大地提高了体系氧化降解能力。
一些学者[7-9]在探究污染物降解工艺的过程中也发现,污染物本身的分子结构在一定程度下也可以发生活化,以促进体系的降解效果。NIE等[8]发现,在光照条件下,将卡马西平(CBZ)与罗丹明B(RhB)的混合溶液引入NaHSO3后,2种污染物均可以发生降解,RhB在反应过程中充当了电子转移的角色,从而活化NaHSO3,产生过一硫酸根自由基降解CBZ。FANG等[9]发现,在对苯醌与过硫酸盐的体系内,对苯醌在光照条件下活化产生半醌自由基(Q−·),从而活化过硫酸盐,产生硫酸根自由基,使PCB28降解率达80%以上。由此可见,罗丹明B、蒽醌等光敏性染料在光照条件下产生了活性物质,这些活性物质活化过硫酸盐、亚硫酸盐等生成氧化性自由基,促进了污染物的降解。
RB19中含有特定氧化敏感型官能团,在可见光照射条件下可被活化,生成的Q−·进一步参与降解反应,并且在反应过程中可能存在长链式自由基反应,可有效延长体系的降解时间。但迄今为止,对该类体系内污染物中间活性物质的形成、参与降解反应的过程、与氧化体系内其他活性成分的协同机制以及这种长链式自由基反应所带来的“增强效应”受不同环境因素的影响规律的研究甚少,揭示此类反应在降低中间产物生物毒性作用机制的研究则更为鲜见[10]。
本研究以石墨相氮化碳/溴化氧铋(g-C3N4/BiOBr)为光催化材料,引入光照(vis)与PS,对不同体系的光催化效果进行对比,构建最优组合体系,从而高效去除RB19;采用淬灭实验、EPR等手段,探明体系内自由基的种类,揭示光催化降解蒽醌染料RB19中Q−·的生成及其衍生物质参与反应过程的机理;进一步研究不同反应条件(材料投加量、初始pH、活性蓝19初始质量浓度、过硫酸盐投加量、光照强度等)对Q−·增强效应的影响;采用大肠杆菌培养实验、LC-MS等实验手段,分析反应后溶液的毒性和降解路径,以期充分发挥Q−·歧化反应的循环效应优势,为蒽醌染料废水处理的实际应用提供理论基础与参考依据。
可见光/石墨相氮化碳/溴化氧铋/过二硫酸盐体系高效降解活性蓝19的增强效应及路径
Enhancement effect and path of vis/g-C3N4/BiOBr/PS system for efficient degradation of active blue 19
-
摘要: 为探究光催化降解蒽醌染料活性蓝19(RB19)过程中蒽醌的光敏特性对去除率的影响,以石墨相氮化碳/溴化氧铋(g-C3N4/BiOBr)为光催化材料,引入光照(vis)与过二硫酸盐(PS),构成协同催化氧化体系,考察光激发产物半醌自由基(Q−·)的形成及其参与、增强体系氧化能力的作用机制,采用单因素(材料投加量、初始pH、活性蓝19初始质量浓度、过硫酸盐投加量、光照强度)分析方法,探究Q−·增强效应的影响,使用降解动力学方法及LC/MS评估降解后废水的毒性。结果表明:Q−·的形成不仅加速了过硫酸盐的活化过程,Q−·与氢醌(H2Q)、醌(Q)形成的循环作用也强化了材料的光催化效应,在模拟太阳光照射下(300 W),催化剂用量为0.1 g·L−1和PS投加量为400 mg·L−1时,Q−·引发的长链式自由基反应使该体系在 80 min内对40 mg·L−1的RB19的降解率可达到100%;反应条件对催化效果影响的大小顺序为材料投加量>初始pH>RB19初始质量浓度>过硫酸盐投加量>光照强度;Q−·中间体的形成有效提高了体系内自由基的含量,是反应后废水毒性显著降低的主要原因。由此可知,体系内Q−·所引发的自降解自循环、长链式自由基效应是实现RB19高效降解的主要因素。本研究结果可为开发蒽醌类染料废水处理技术的开发及实际应用提供参考。
-
关键词:
- 可见光/石墨相氮化碳/溴化氧铋/过二硫酸盐 /
- 高级氧化 /
- 半醌自由基 /
- 蒽醌染料活性蓝19 /
- 光催化
Abstract: To investigate the influence of the photosensitive properties of anthraquinone on the removal efficiency of anthraquinone-based Reactive Blue 19 (RB19) by photocatalytic degradation, the graphitic phase carbon nitride/bismuth bromide oxide (g-C3N4/BiOBr) was used as the photocatalytic material, and light (vis) together with peroxydisulfate (PS) were introduced, and a synergistic catalytic oxidation system was built. The formation of semiquinone radicals (Q−·) during the degradation process, and the mechanism of their participation and enhancement of the oxidation capacity were investigated. The effect of Q−·-enhancement effect was investigated by single factor (material dosing, initial pH, initial mass concentration of RB19, PS dosing, and light intensity) analysis method. The toxicity of the degraded wastewater was assessed by the degradation kinetics method and LC/MS. The results showed that the formation of Q−· not only accelerated the activation of PS, but also enhanced the photocatalytic effect of the material due to its cyclic action with hydroquinone (H2Q) and quinone (Q). Under the simulated sunlight (300 W), at the catalyst dosage of 0.1 g·L−1 and the PS dosage of 400 mg·L−1, the long chain radical reaction initiated by Q−· in the process of deriving other free radicals enabled the system to completely degrade RB19 with initial concentration of 40 mg·L−1 within 80 min. The influence of the four factors followed the order: material dosage > initial pH > RB19 initial concentration > light intensity. The significant reduction of wastewater toxicity after the reaction was mainly attributed to the formation of semi-quinone radical intermediates, which could effectively increase the content of free radicals in the system. In conclusion, the self-degradation, self-cycling and long-chain radical effect induced by Q−· within the system was the main reason for achieving an efficient degradation of RB19. The results of this study can provide a reference for the development and practical application of anthraquinone dyestuff wastewater treatment technology. -
表 1 不同单因素下的动力学拟合结果
Table 1. Fitting results of different single factor dynamics
影响因素 数值 kobs/min−1 RB19初始质量浓度 20 mg·L−1 0.030 40 mg·L−1 0.026 60 mg·L−1 0.016 80 mg·L−1 0.010 初始pH 3 0.010 6 0.016 9 0.010 11 0.004 光催化剂投加量 0.05 g·L−1 0.009 0.1 g·L−1 0.017 0.2 g·L−1 0.022 0.3 g·L−1 0.027 PS投加量 50 mg·L−1 0.014 100 mg·L−1 0.016 200 mg·L−1 0.018 400 mg·L−1 0.020 光照强度 2 W·m−2 0.015 5 W·m−2 0.016 7 W·m−2 0.016 -
[1] 钱俊, 刘福强, 胡大波, 等. 蒽醌系染料废水的3R处理技术进展与展望[J]. 环境科技, 2009, 22(2): 66-69. doi: 10.3969/j.issn.1674-4829.2009.02.019 [2] 苏营营, 于艳卿, 杨沛珊, 等. 纳米TiO2/硅藻土光催化降解蒽醌染料废水的研究[J]. 中国环境科学, 2009, 29(11): 1171-1176. doi: 10.3321/j.issn:1000-6923.2009.11.009 [3] 丁绍兰, 李郑坤, 王睿, 等. 微电解及微电解芬顿氧化处理染料废水的中试研究[J]. 中国皮革, 2009, 38(11): 5-8. [4] MASI F, RIZZO A, BRESCIANI R, et al. Lessons learnt from a pilot study on residual dye removal by an aerated treatment wetland[J]. Science of the Total Environment, 2019, 648: 144-152. doi: 10.1016/j.scitotenv.2018.08.113 [5] 龚丹. 蒽醌染料的TiO2光催化降解产物分析及其降解过程研究[D]. 武汉: 武汉纺织大学, 2013. [6] GAO Y W, LI S M, LI Y X, et al. Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate[J]. Applied Catalysis B:Environmental, 2017, 202: 165-174. doi: 10.1016/j.apcatb.2016.09.005 [7] CAI T, LIU Y T, WANG L L, et al. Activation of persulfate by photoexcited dye for antibiotic degradation: Radical and nonradical reactions[J]. Chemical Engineering Journal, 2019, 375: 122070. doi: 10.1016/j.cej.2019.122070 [8] NIE G, XIAO L. New insight into wastewater treatment by activation of sulfite with photosensitive organic dyes under visible light irradiation[J]. Chemical Engineering Journal, 2020, 389: 123446. doi: 10.1016/j.cej.2019.123446 [9] FANG G, GAO J, DIONYSIOU D D, et al. Activation of persulfate by quinones: Free radical reactions and implication for the degradation of PCBs[J]. Environmental Science & Technology, 2013, 47(9): 4605-4611. [10] ROUTOULA E, PATWARDHAN S V. Degradation of anthraquinone dyes from effluents: A review focusing on enzymatic dye degradation with industrial potential[J]. Environmental Science & Technology, 2020, 54(2): 647-664. [11] 翟文琰. g-C3N4/BiOBr/PS光催化氧化体系降解蒽醌类染料废水的机理研究[D]. 武汉: 武汉理工大学, 2021. [12] 朱维晃, 杨瑞, 王宏伟. 蒽醌活化过硫酸盐降解罗丹明B[J]. 环境化学, 2015, 34(10): 1948-1954. doi: 10.7524/j.issn.0254-6108.2015.10.2015030904 [13] 朱维晃, 袁博, 杨瑞. 蒽醌类溶解有机质和模拟太阳光耦合驱动下的Fenton法对罗丹明B脱色特征的影响因素研究[J]. 环境科学学报, 2015, 35(2): 508-513. doi: 10.13671/j.hjkxxb.2014.0762 [14] 朱维晃, 王宏伟, 刘文奇. 对苯醌活化过硫酸盐降解罗丹明B的动力学特征及其影响因素[J]. 中国环境科学, 2016, 36(6): 1732-1737. doi: 10.3969/j.issn.1000-6923.2016.06.019 [15] LI R, CAI M, LIU H, et al. Thermo-activated peroxydisulfate oxidation of indomethacin: Kinetics study and influences of co-existing substances[J]. Chemosphere, 2018, 212: 1067-1075. doi: 10.1016/j.chemosphere.2018.08.126 [16] GAO F R, CHEN J C, ZHAO J Z, et al. Z-scheme heterojunction g-C3N4@pda/BiOBr with biomimetic polydopamine as electron transfer mediators for enhanced visible-light driven degradation of sulfamethoxazole[J]. Chemical Engineering Journal, 2020, 386: 124014. doi: 10.1016/j.cej.2020.124014 [17] ZHU B Z, HAR-EL R, KITROSSKY N, et al. New modes of action of desferrioxamine: Scavenging of semiquinone radical and stimulation of hydrolysis of tetrachlorohydroquinone[J]. Free Radical Biology & Medicine, 1998, 24(2): 360-369. [18] BEN-ZHAN Z, HONG-TAO Z, BALARAMAN K, et al. Metal-independent production of hydroxyl radicals by halogenated quinones and hydrogen peroxide: An ESR spin trapping study[J]. Free Radical Biology and Medicine, 2002, 32(5): 465-473. doi: 10.1016/S0891-5849(01)00824-3 [19] ZHANG B, HU X Y, LIU E Z, et al. Novel S-scheme 2D/2D BiOBr/g-C3N4 heterojunctions with enhanced photocatalytic activity[J]. Chinese Journal of Catalysis, 2021, 42(9): 1519-1529. doi: 10.1016/S1872-2067(20)63765-2 [20] GENG X, WANG L, ZHANG L, et al. H2O2 production and in situ sterilization over a ZnO/g-C3N4 heterojunction photocatalyst[J]. Chemical Engineering Journal, 2021, 420(1): 129722. [21] QU J N, DU Y, FENG Y B, et al. Visible-light-responsive K-doped g-C3N4/BiOBr hybrid photocatalyst with highly efficient degradation of rhodamine B and tetracycline[J]. Materials Science in Semiconductor Processing, 2020, 112: 105023. doi: 10.1016/j.mssp.2020.105023 [22] ZHANG S, GU P C, MA R, et al. Recent developments in fabrication and structure regulation of visible-light-driven g-C3N4-based photocatalysts towards water purification: A critical review[J]. Catalysis Today, 2019, 335: 65-77. doi: 10.1016/j.cattod.2018.09.013 [23] 李扬帆. g-C3N4/BiOBr复合材料的制备及光催化性能研究[D]. 武汉: 武汉理工大学, 2018. [24] SHI Z, ZHANG Y, SHEN X, et al. Fabrication of g-C3N4/BiOBr heterojunctions on carbon fibers as weaveable photocatalyst for degrading tetracycline hydrochloride under visible light[J]. Chemical Engineering Journal, 2020, 386: 124010. doi: 10.1016/j.cej.2020.124010 [25] HOU Y P, GAN Y Y, YU Z B, et al. Solar promoted azo dye degradation and energy production in the biophotoelectrochemical system with a g-C3N4/BiOBr heterojunction photocathode[J]. Journal of Power Sources, 2017, 371: 26-34. doi: 10.1016/j.jpowsour.2017.10.033 [26] LIU B C, QIAO M, WANG Y B, et al. Persulfate enhanced photocatalytic degradation of bisphenol A by g-C3N4 nanosheets under visible light irradiation[J]. Chemosphere, 2017, 189: 115-122. doi: 10.1016/j.chemosphere.2017.08.169 [27] CHEVES W. Free radical chain reactions[J]. Chemical & Engineering News, 1961, 39(40): 98-110. [28] 唐建伟. 光电耦合催化氧化处理高氯3, 4-二甲基苯胺废水的机理研究[D]. 武汉: 武汉理工大学, 2019. [29] 商李金. 提高C. I. 活性蓝19应用性能的研究[D]. 上海: 东华大学, 2012. [30] 于辉, 金春姬, 王鹏远, 等. Fe2+与Fe0活化过二硫酸盐降解活性艳蓝KN-R[J]. 环境科学研究, 2015, 28(1): 88-95. [31] 蒋梦然. 铁碳微电解耦合微生物深度处理印染废水除碳脱氮研究[D]. 上海: 东华大学, 2015. [32] 傅世磊. 水中纳米材料和重金属对大肠杆菌的毒性研究[D]. 杭州: 浙江农林大学, 2015. [33] WANG J, WANG S. Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism[J]. Chemical Engineering Journal, 2020, 401: 126158. doi: 10.1016/j.cej.2020.126158 [34] HE W W, JIA H M, WAMER W G, et al. Predicting and identifying reactive oxygen species and electrons for photocatalytic metal sulfide micro-nano structures[J]. Journal of Catalysis, 2014, 320: 97-105. doi: 10.1016/j.jcat.2014.10.004 [35] 李海燕, 龚丹. 蒽醌染料的矿化过程及其相关中间产物分析[J]. 安全与环境学报, 2016, 16(2): 254-257. [36] LOVATO M E, FIASCONARO M L, MARTÍN C A. Degradation and toxicity depletion of RB19 anthraquinone dye in water by ozone-based technologies[J]. Water Science and Technology, 2017, 75(4): 813-822. doi: 10.2166/wst.2016.501