-
含酚废水主要来源于煤制气、制药和焦化过程,是目前极具代表性的高毒性难降解废水[1]。酚类物质是一种毒性很强的原型质毒物,对大部分生物都有影响,轻则腐蚀皮肤,重则使中枢神经受到抑制甚至引发癌症[2]。另外,酚类物质产量较大,据统计,每年全球产生的酚类物质大约有5×104 t[3]。鉴于其毒性大、产量大、分布广泛等特点,酚类污染物不仅是我国环境优先控制污染物之一,而且也是美国环保署列出的65种有毒污染物以及129种优先控制污染物之一[4]。
目前,含酚废水常见的处理方法主要有生化法和物化法,物化法以Fenton法和O3催化氧化法等高级氧化技术为主。生物法碍于较高的毒性降解效率低,制约了该方法在该类废水处理中的应用[5]。近年来,高级氧化技术因其高效、经济、无二次污染等特点备受研究者们的青睐。刘金泉等[6]发现多种O3耦合工艺降解有机物相较于单一O3均有更好的效果;姚宏嘉等[7]制备了生物炭负载γ-MnO2复合纳米材料来活化过一硫酸盐 (PMS) 降解对氯苯酚,反应40 min后降解率可达100%;马海涛[8]发现等离子体协同铁碳填料活化过硫酸盐 (PS) 对污水中苯酚去除率较高;朱彤等[9]发现UV/O3/TiO2耦合体系可以解决O3利用率低的问题,高效降解2,4,6-三氯苯酚。然而,高级氧化技术在应用过程中也存在一些问题,Fenton反应过程产生大量铁泥,造成后续处理负担大;臭氧均相或非均相催化氧化技术臭氧利用率低是导致运行成本高的主要原因。因此,针对难降解、高毒性有机物的去除,探索一种高效、清洁的水处理技术势在必行。
本研究选用苯酚作为目标污染物,利用UV催化O3和PS对含酚废水进行处理。对UV/O3、UV/PS、UV/O3/PS等工艺对苯酚的去除效果与矿化率进行比较;并对pH、O3投加量及PS投加量等影响因素进行研究;同时,对反应动力学、自由基产生规律进行分析,探索反应机理,为UV/O3/PS耦合工艺对含酚废水的降解提供可靠的理论基础。
UV/O3/PS耦合工艺在含酚废水处理中的应用
Application of UV/O3/PS coupling process in the treatment of phenol wastewater
-
摘要: 针对目前高级氧化技术处理含酚废水存在O3利用率低等缺点,为提高反应体系强氧化性物质的含量,强化水体中酚类物质的降解与矿化,提出了UV/O3/PS耦合体系;在探究多种不同耦合体系的苯酚降解率和TOC去除率、反应影响因素和活性物质的基础上,进一步发掘该体系降解含酚废水的潜力与优势。结果表明:UV/O3/PS体系在15 min内可将苯酚完全降解;相较于单一的UV/O3法或UV/PS法,水中酚类的矿化率分别提高了47.36%和39.93%;通过对多种影响因素进行分析,确定了UV/O3/PS体系中合适的O3与PS投加量,并发现UV/O3/PS体系对pH和HCO3− 适应范围较广,在难降解废水处理中具有广泛的应用价值;通过ESR分析发现耦合体系在UV的催化下产生的·OH和·SO4−比单一体系更多,具有促进作用。由此可知,UV/O3/PS耦合工艺能在较广的适应范围内较好的降解酚类物质。该研究结果可为UV/O3/PS耦合工艺对含酚废水的降解提供理论参考。Abstract: In view of the low utilization rate of O3 in the treatment of phenol containing wastewater by the advanced oxidation technology at current, UV/O3/PS coupling system is proposed to improve the content of strong oxidizing substances in the reaction system and strengthen the degradation and mineralization of phenol substances in the wastewater; On the basis of exploring the phenol degradation rate, TOC removal rate, reaction influencing factors and active substances of various coupling systems, the potential and advantages of this system in degrading phenolic wastewater were further studied. The results showed that the UV/O3/PS system could completely degrade phenol within 15 minutes. Compared with the single UV/O3 method or UV/PS method, the mineralization rate of phenols in water increased by 47.36% and 39.93%, respectively. Through analysis of various influencing factors, the appropriate dosages of O3 and PS in the UV/O3/PS system were determined. It was found that the UV/O3/PS system had a wide range of adaptability to pH and HCO3−, which implied that this system had an extensive application value in the treatment of refractory wastewater. In addition, ESR analysis showed that the coupling system produced more ·OH and ·SO4− under the catalysis of UV than the single system, which had a promoting effect. Thus, the UV/O3/PS coupling process had a better performance on phenols degradation in a wide range of applications. The research results can provide a theoretical reference for the degradation of phenolic wastewater by UV/O3/PS coupling process.
-
Key words:
- UV/O3/PS /
- free radical /
- phenolic wastewater /
- advanced oxidation /
- synergistic effect
-
表 1 不同工艺的准一级动力学参数
Table 1. Quasi first order kinetic parameters of different processes
工艺名称 速率常数k/ min−1 R2 动力学方程 UV/O3/PS 0.269 9 0.988 3 ln(C/C0)=−0.269 9t−0.287 1 UV/O3 0.143 1 0.981 5 ln(C/C0)=−0.143 1t+0.192 9 UV/PS 0.146 8 0.988 0 ln(C/C0)=−0.146 8t-0.058 8 -
[1] 王勇, 杜明辉, 张宁, 等. α-Fe2O3催化臭氧氧化处理苯酚废水效果及机理[J]. 环境科学研究, 2022, 35(8): 1-14. [2] KALAICHELVAN S, SUNDARAGANESAN N, DERELIO, et al. Experimental, theoretical calculations of the vi-brational spectra and conformational analysis of 2, 4- di-tert-butylphenol[J]. Spectrochimica Acta:Part A, Molecular and Biomolecular Spectroscopy, 2012, 85(1): 198-209. doi: 10.1016/j.saa.2011.09.061 [3] BACH C, DAUCHY X, SEVERIN I, et al. Effect of temperature on the release of intentionally and non-intentionally added substances from polyethylene terephthalate (PET) bottles into water: Chemical analysis and potential toxicity[J]. Food Chemistry, 2013, 139(1/2/3/4): 672-680. [4] MACRAENA R, JOSEMANUEL M M, INMACULADA J D, et al. Screening of hormone-like activities in bottled waters available in Southern Spain using receptor-specific bioassays[J]. Environment International, 2015, 74(5): 125-135. [5] 强喆林, 王玲, 吴迪, 等. 含酚废水处理技术研究进展[J]. 当代化工, 2021, 50(9): 2206-2210. doi: 10.3969/j.issn.1671-0460.2021.09.042 [6] 刘金泉, 李天增, 王发珍, 等. O3、H2O2/O3及UV/O3在焦化废水深度处理中的应用[J]. 环境工程学报, 2009, 3(3): 501-505. [7] 姚宏嘉, 陈星, 张玉, 等. 生物炭负载γ-MnO2纳米复合材料活化过一硫酸盐降解对氯苯酚的性能及机理[J]. 环境工程学报, 2022, 16(6): 1833-1844. doi: 10.12030/j.cjee.202201078 [8] 马海涛. 等离子体协同铁碳微电解活化过硫酸盐降解苯酚的研究[D]. 内蒙古: 内蒙古科技大学, 2021. [9] 朱彤, 杨世鹏, 谭伟强, 等. UV/O3/TiO2耦合工艺降解2, 4, 6-三氯苯酚[J]. 环境工程, 2021, 39(3): 7-13. [10] 黄会静, 许钊. 净水厂常用进口臭氧发生器设备选型对比[J]. 科学技术创新, 2021(2): 160-162. doi: 10.3969/j.issn.1673-1328.2021.02.068 [11] SUN C, CHEN T, HUANG Q X, et al. Activation of persulfate by CO2-activated biochar for improved phenolic pollutant degradation: Performance and mechanism[J]. Chemical Engineering Journal, 2019, 380: 122519. [12] 陆一新, 何悦, 张建强, 等. UV/PS降解阿特拉津机理及动力学分析[J]. 西南交通大学学报, 2020, 55(3): 635-642. [13] 大连市环境监测中心. 水质 挥发酚的测定 4-氨基安替比林分光光度法: HJ 503-2009[S]. 北京: 中国标准出版社, 2009. [14] 杨世迎, 陈友媛, 胥慧真, 等. 过硫酸盐活化高级氧化新技术[J]. 化学进展, 2008, 20(9): 1433-1438. [15] LIU B, QU F S, CHEN W, et al. Microcystis aeruginosa- laden water treatment using enhanced coagulation by persulfate/Fe(II), ozone and permanganate: Comparison of the simultaneous and successive oxidant dosing strategy[J]. Water Research, 2017, 125: 72-80. doi: 10.1016/j.watres.2017.08.035 [16] ACERO, JUAN L, VON G T, et al. Characterization of oxidation processes: Ozonation and the AOP O3/H2O2[J]. Journal American Water Works Association, 2001, 93(10): 90-100. doi: 10.1002/j.1551-8833.2001.tb09311.x [17] STAEHELIN J, HOIGNE J. Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions.[J]. Environmental Science & Technology, 1985, 19(12): 1206-1213. [18] 邵青, 王颖, 李晶, 等. 紫外/臭氧工艺在水处理中的技术原理及研究进展[J]. 中国给水排水, 2019, 35(14): 16-23. doi: 10.19853/j.zgjsps.1000-4602.2019.14.003 [19] 杨培增, 岳泓伸, 季跃飞, 等. 土壤铵氮在热活化过硫酸盐氧化过程中的转化[J]. 中国环境科学, 2022, 42(1): 267-275. doi: 10.3969/j.issn.1000-6923.2022.01.029 [20] QIN W L, LIN Z, SUN L, et al. A preliminary study on the integrated UV/ozone/persulfate process for efficient abatement of atrazine[J]. Ozone Science and Engineering, 2020, 42: 558-564. doi: 10.1080/01919512.2020.1746631 [21] 陈傲蕾, 常风民, 汪翠萍, 等. O3/UV降解含氮杂环化合物喹啉[J]. 环境科学, 2016, 37(10): 3884-3890. [22] YANG, Y, GUO, H G, ZHANG, Y L, et al. Degradation of bisphenol a using ozone/persulfate process: Kinetics and mechanism[J]. Water, Air and Soil Pollution, 2016, 227(2): 53. doi: 10.1007/s11270-016-2746-x [23] 李海翔, 林华, 陆兰晶. 硝基苯类化合物高级氧化与生物还原处理技术研究[M]. 北京: 中国环境科学出版社, 2014. [24] TAN C Q, GAO N Y, DENG Y, et al. Degradation of antipyrine by UV, UV/H2O2 and UV/PS[J]. Journal of Hazardous Materials, 2013, 260(C): 1008-1016. [25] YANG W W, WU T T. Investigation of matrix effects in laboratory studies of catalytic ozonation processes[J]. Industrial & Engineering Chemistry Research, 2019, 58(8): 3468-3477. [26] 林艺佳. 过氧化钙强化Fenton氧化处理苯酚废水的性能及机制研究[D]. 湘潭: 湘潭大学, 2021.