-
鱼类是人类摄取动物蛋白质、微量营养素和必需脂肪酸的重要来源之一,在当前人口快速增长的同时,对鱼类的需求也在不断增加[1]。鉴于捕捞渔业的过度开发及其引起的相关水生态环境问题,选择并使用新型环保的养殖系统维持全球鱼类需求的上升是当务之急[2]。陆基循环水产养殖系统(land-based recirculating aquaculture systems,RAS)通过多步骤的水处理过程回收自然输入水,减少对新添加水的需求,同时降低废水中污染物的浓度;具备控制养殖水质及节水节能的优势,优于传统的养殖系统,是未来重要的养殖模式之一[3-4]。然而,RAS作为人工圈养系统,具有相对封闭性,在养殖过程中需投喂大量外源性饲料,其产生的鱼粪和残饵会在水中沉积,经微生物分解后,将增加水体有机和无机物质(C、N、P)含量,引起水体氨氮、COD等有害物质的累积,导致水质恶化并引起鱼虾类疾病频繁发生[5-6]。
RAS中鱼粪是养殖区沉积物的主要组成部分,其对上层水的直接影响在于引起有机物的积累及底质向缺氧状态的改变[7]。现有研究表明,氧环境改变是影响营养物质释放的关键因子[8]。其中,厌氧环境会加速底泥N、P释放;好氧条件会抑制反硝化作用,使NO3−-N消耗减少,同时能够抑制NO3−-N异化还原为NH4+-N,促进硝化作用[9]。BEUTEL等[10]指出,湖泊沉积物中氨释放通常发生在厌氧条件下,而高溶解氧含量会抑制沉积物中氨释放。KANG等[11]发现海河口缺氧环境中TP和TN的浓度约为好氧环境中的两倍。目前,关于氧环境改变下水产养殖系统沉积物-水界面C、N、P迁移转化特征的研究主要集中于湖泊、池塘、水库等相对开放的养殖系统[12-14],而对于以鱼粪和残饵为主要沉积物的相对封闭、高密度养殖和高强度饵料投放的RAS的研究鲜有报道。因此,本研究采用室内模拟的方法,探讨了氧环境(好氧、厌氧)对RAS中鲈鱼粪N、P、DOM(dissolved organic matter,DOM)释放特征及鱼粪细菌群落结构的影响,揭示了鱼粪及其上覆水理化性质与细菌群落特征间的相关关系,旨在为陆基循环水产养殖水体富营养化预防和水产养殖业健康发展提供参考。
氧环境改变对陆基循环水养殖鱼粪碳、氮、磷释放特征及细菌群落的影响
Oxygen environment changes on carbon, nitrogen, and phosphorus release and bacterial community of land-based recirculating aquaculture fish manure
-
摘要: 为探究氧环境改变对陆基循环水养殖系统(RAS)中鲈鱼粪氮(N)、磷(P)、溶解性有机质(DOM)释放特征及鱼粪细菌群落多样性的影响,采用室内模拟的方法,分析氧环境(好氧、厌氧)改变对鱼粪及其上覆水理化性质及鱼粪细菌群落特征的影响,并揭示其间的相关关系。结果表明,第1~16天,厌氧处理上覆水中NH4+-N、TP、COD和TOC质量浓度明显高于好氧处理,在第16~33 天,NH4+-N质量浓度持续增加、TP质量浓度低于好氧处理组、COD和TOC质量浓度降低但仍高于好氧处理。三维荧光光谱表明,氧环境改变下上覆水DOM主要成分是蛋白质、腐殖质类物质,但厌氧条件下各组分含量均较高。细菌群落分析表明,不同处理鱼粪细菌群落相对丰度存在差异,优势菌门为Proteobacteria、Firmicutes、Actinobacteria、Bacteroidetes、Chloroflexi,相对丰度均大于5%;厌氧处理组优势菌属为Acinetobacter、Clostridium_sensu_stricto_13、Propioniciclava、Ornithinibacter,好氧处理组优势菌属为Acinetobacte、Kurthia、Comamonas、Propioniciclava。细菌群落聚类特征与环境因子相关性表明,随反应时间增加,氧环境改变下细菌群落结构趋于相似;厌氧处理下DOM(C1、C2、C4)、反应时间、COD、TOC、鱼粪TN、鱼粪TP、NO3−-N是影响细菌属的关键环境因子,好氧处理下仅有部分细菌属与反应时间、EC、DOM(C1、C2、C4)、NH4+-N具有显著相关性(P<0.05)。厌氧处理能够显著影响鱼粪及上覆水的理化性质,促进氮、磷及有机质释放,并在一定程度上影响细菌群落结构和多样性,其次是好氧处理。Abstract: In order to explore the effects of oxygen environment changes on the release characteristics of nitrogen (N), phosphorus (P), dissolved organic matter (DOM) and bacterial community diversity from fish manure in the land-based circulating water culture system (RAS). The indoor simulation experiments were conducted to analyze the effects of oxygen environment (aerobic and anaerobic) changes on the physicochemical properties of the fish manure and its overlying water, and the bacterial community characteristics of the fish manure, finally reveal their correlations. The results showed that the mass concentrations of NH4+-N, TP, COD, and TOC in the overlying water by anaerobic treatments were significantly higher than that by aerobic treatments at 1-16 d. At 16-33 d, the NH4+-N continuously increased and the TP was lower than that by aerobic treatments. The mass concentrations of COD and TOC by the anaerobic treatment were still higher than that by aerobic treatments. Three-dimensional fluorescence spectroscopy showed that DOM components in the overlying water mainly included protein and humic substances under the changes of oxygen environment, but anaerobic conditions caused higher contents of each component. Microbiological analysis showed that there were differences in the relative abundance of bacterial communities by different treatments. The dominant bacterial phyla were Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, and Chloroflexi, and their relative abundances were all greater than 5%. The dominant bacterial genera by anaerobic treatments mainly included Acinetobacter, Clostridium_sensu_stricto_13, Propioniciclava, and Ornithinibacte. The dominant bacterial genera by aerobic treatments were Acinetobacte, Kurthia, Comamonas, and Propioniciclava. The correlation analysis between the clustering characteristics of bacterial community and environmental factors showed that the bacterial community structure by aerobic and anaerobic treatments tended to be similar with the increase of reaction times. The DOM components (C1, C2, and C4), reaction times, COD, TOC, fish manure TN, fish manure TP, and NO3−-N were the key environmental factors that affecting the bacterial genera by anaerobic treatments. There were significant correlations between some bacterial genera and reaction times, EC, DOM (C1, C2, C4), NH4+-N, and COD by aerobic treatments (P<0.05). Additionally, the change in oxygen environment significantly impacted the physicochemical properties of fish manure and its overlying water, promoted the release of N, P and DOM, and influenced on the structure and diversity of bacterial community. These effects by anaerobic treatments were stronger than that by aerobic treatments.
-
表 1 氧环境改变下鱼粪中细菌多样性指数变化特征
Table 1. The diversity index of bacteria in fish manure under the changes in oxygen environment
样品 平均序列数/条 OTUs/个 Ace指数 Chao1指数 Shannon指数 Simpson指数 D1Y 37 159 840 1 658 1 429 4.57 0.06 D4Y 45 069 690 1 429 1 218 4.54 0.06 D9Y 34 295 710 1 452 1 230 4.09 0.11 D16Y 41 461 1 051 1 617 1 560 5.20 0.03 D24Y 45 779 844 1 485 1 474 4.94 0.03 D33Y 45 174 983 1 974 1 715 5.20 0.02 D1H 39 302 636 1 523 1 242 3.15 0.21 D4H 39 004 529 1 124 972 3.73 0.08 D9H 42 965 555 1 065 935 4.41 0.03 D16H 36 722 948 1 735 1 614 5.26 0.02 D24H 49 584 1 028 1 670 1 704 5.44 0.01 D33H 47 452 999 1 604 1 630 5.40 0.02 -
[1] AGUILAR-ALARCÓN P, GONZALEZ S V, SIMONSEN M A, et al. Characterizing changes of dissolved organic matter composition with the use of distinct feeds in recirculating aquaculture systems via high-resolution mass spectrometry[J]. Science of the Total Environment, 2020, 749: 142326. doi: 10.1016/j.scitotenv.2020.142326 [2] BESSON M, AUBIN J, KOMEN H, et al. Environmental impacts of genetic improvement of growth rate and feed conversion ratio in fish farming under rearing density and nitrogen output limitations[J]. Journal of Cleaner Production, 2016, 116: 100-109. doi: 10.1016/j.jclepro.2015.12.084 [3] BADIOLA M, MENDIOLA D, BOSTOCK J, et al. Aquacultural engineering recirculating aquaculture systems (RAS) analysis: Main issues on management and future challenges[J]. Aquacultural Engineering, 2012, 51: 26-35. doi: 10.1016/j.aquaeng.2012.07.004 [4] MARTINS C I M, EDING E H, VERDEGEM M C J, et al. New developments in recirculating aquaculture systems in Europe: a perspective on environmental sustainability[J]. Aquacultural Engineering, 2010, 43(3): 83-93. doi: 10.1016/j.aquaeng.2010.09.002 [5] VAN R J. Waste treatment in recirculating aquaculture systems[J]. Aquacultural Engineering, 2013, 53: 49-56. [6] 冯国禄, 罗金飞, 廖永岩, 等. 不同盐度循环养殖水体微生物群落特征[J]. 环境科学研究, 2020, 33(8): 1838-1847. doi: 10.13198/j.issn.1001-6929.2020.02.11 [7] YOKOYAMA H, ABO K, ISHIHI Y. Quantifying aquaculture-derived organic matter in the sediment in and around a coastal fish farm using stable carbon and nitrogen isotope ratios[J]. Aquaculture, 2006, 254: 411-425. doi: 10.1016/j.aquaculture.2005.10.024 [8] WANG J F, CHEN J G, YU P P, et al. Oxygenation and synchronous control of nitrogen and phosphorus release at the sediment-water interface using oxygen nano-bubble modified material[J]. Science of The Total Environment, 2020: 725. doi: 10.1016/j.scitotenv.2020.138258 [9] 代政, 祁艳丽, 唐永杰, 等. 上覆水环境因子对滨海水库沉积物氮磷释放的影响[J]. 环境科学研究, 2016, 29(12): 1766-1772. doi: 10.13198/j.issn.1001-6929.2016.12.05 [10] BEUTEL M W, LEONARD T M, DENT S R, et al. Effects of aerobic and anaerobic conditions on P, N, Fe, Mn, and Hg accumulation in waters overlaying profundal sediments of an oligo-mesotrophic lake[J]. Water Research, 2008, 42: 1953-1962. doi: 10.1016/j.watres.2007.11.027 [11] KANG M X, PENG S, TIAN Y M, et al. Effects of dissolved oxygen and nutrient loading on phosphorus fluxes at the sediment-water interface in the Hai River Estuary, China[J]. Marine Pollution Bulletin, 2018, 130: 132-139. doi: 10.1016/j.marpolbul.2018.03.029 [12] YANG P, ZHAO G H, TONG C, et al. Assessing nutrient budgets and environmental impacts of coastal land-based aquaculture system in southeastern China[J]. Agriculture, Ecosystems& Environment, 2021: 322. doi: 10.1016/j.agee.2021.107662 [13] BORGES P A F, TRAIN S, DIAS J D, et al. Effects of fish farming on plankton structure in a Braziliantropical reservoir[J]. Hydrobiologia, 2010, 649(1): 279-291. doi: 10.1007/s10750-010-0271-2 [14] ZHU D T, CHENG X J, SAMPLE D J, et al. Effect of intermittent aeration mode on nitrogen concentration in the water column and sediment pore water of aquaculture ponds[J]. Journal of Environmental Sciences, 2020, 90: 331-342. doi: 10.1016/j.jes.2019.11.022 [15] 熊仕娟, 徐卫红, 杨芸, 等. 不同温度下微生物和纤维素酶对发酵猪粪理化特性的影响[J]. 环境科学学报, 2014, 34(12): 3158-3165. doi: 10.13671/j.hjkxxb.2014.0668 [16] 鲁如坤. 土壤农业化学分析方法[J]. 北京. 中国农业科技出版社, 2000: 108. [17] XU N, TAN C, WANG H Y, et al. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure[J]. European Journal of Soil Biology, 2016, 74: 1-8. doi: 10.1016/j.ejsobi.2016.02.004 [18] CHEN S F, ZHOU Y Q, CHEN Y R, et al. fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): 884-890. doi: 10.1093/bioinformatics/bty560 [19] MAGOČ T, SALZBERG S L. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21): 2957-2963. doi: 10.1093/bioinformatics/btr507 [20] EDGAR R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10): 996-998. doi: 10.1038/nmeth.2604 [21] WANG Q, GARRITY G M, TIEGJE J M, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied Environment Microbiology, 2007, 73(16): 5261‐5267. [22] 梅晓洁, 唐建国, 张悦. 城镇污水处理厂污泥稳定化处理产物转化机理及可利用价值揭示[J]. 给水排水, 2018, 54(11): 11-19. doi: 10.3969/j.issn.1002-8471.2018.11.002 [23] 尚丽霞, 柯凡, 李文朝, 等. 高密度蓝藻厌氧分解过程与污染物释放实验研究[J]. 湖泊科学, 2013, 25(1): 47-54. doi: 10.3969/j.issn.1003-5427.2013.01.007 [24] 谌建宇, 许振成, 骆其金, 等. 曝气复氧对滇池重污染支流底泥污染物迁移转化的影响[J]. 生态环境, 2008, 17(6): 2154-2158. [25] 王美丽, 刘 春, 何连生, 等. 曝气深度对河道底泥特性及水质的影响[J]. 环境工程学报, 2016, 10(6): 2909-2914. doi: 10.12030/j.cjee.201501034 [26] ZHANG L, WANG S R, WU Z H. Coupling effect of pH and dissolved oxygen in water column on nitrogen release at watere-sediment interface of Erhai Lake, China[J]. Estuarine, Coastal and Shelf Science, 2014, 149: 178-186. doi: 10.1016/j.ecss.2014.08.009 [27] TIAN X P, ZHAO J T, HUANG J, et al. The metabolic process of aerobic granular sludge treating piggery wastewater: Microbial community, denitrification genes and mathematical model calculation[J]. Journal of Environmental Chemical Engineering, 2021: 9. doi: 10.1016/j.jece.2021.105392 [28] BAO Y, HUANG T, NING C W, et al. Changes of DOM and its correlation with internal nutrient release during cyanobacterial growth and decline in Lake Chaohu, China[J]. Journal of Environmental Sciences, 2023, 124: 769-781. doi: 10.1016/j.jes.2022.02.019 [29] 林绍霞, 肖致强, 张转铃, 等. 贵州草海水体溶解性有机物的荧光光谱特征及来源解析[J]. 中国环境科学, 2021, 41(3): 1325-1335. doi: 10.3969/j.issn.1000-6923.2021.03.036 [30] ZHAO L Y, LI N, HUANG T L, et al. Effects of artificially induced complete mixing on dissolved organic matter in a stratified source water reservoir[J]. Journal of Environmental Sciences, 2022, 111: 130-140. doi: 10.1016/j.jes.2021.03.024 [31] HOU L F, ZHOU Q, WU Q P, et al. Spatiotemporal changes in bacterial community and microbial activity in a full-scale drinking water treatment plant[J]. Science of the Total Environment, 2018, 625: 449-459. doi: 10.1016/j.scitotenv.2017.12.301 [32] SINGH B, MINICK K J, STRICKLAND M S, et al. Temporal and spatial impact of human cadaver decomposition on soil bacterial and arthropod community structure and function[J]. Frontiers in Microbiology, 2018: 8. doi: 10.3389/fmicb.2017.02616 [33] CHEN J F, LIU Y Y, LIU K, et al. Bacterial community composition of internal circulation reactor at different heights for large-scale brewery wastewater treatment[J]. Bioresource Technology, 2021: 331. doi: 10.1016/j.biortech.2021.125027 [34] ZHOU R, WANG Y J, HILAL M G, et al. Temporal succession of water microbiomes and resistomes during carcass decomposition in a fish model[J]. Journal of Hazardous Materials, 2021: 403. doi: 10.1016/j.jhazmat.2020.123795 [35] MELVILLE C M, SCOTT K P, MERCER D K, et al. Novel tetracycline resistance gene, tet(32), in the Clostridium-related human colonic anaerobe K10 and its transmission in vitro to the rumen anaerobe Butyrivibrio fibrisolvens[J]. Antimicrobial Agents and Chemotherapy, 2001, 45(11): 3246-3249. doi: 10.1128/AAC.45.11.3246-3249.2001 [36] WEISS S, CARTER D O, METCALF J L, et al. Carcass mass has little influence on the structure of grave soil microbial communities[J]. International Journal of Legal Medicine, 2016, 130(1): 253-263. doi: 10.1007/s00414-015-1206-2 [37] TRAVING S J, ROWE O, JAKOBSEN N M, et al. The effect of increased loads of dissolved organic matter on estuarine microbial community composition and function[J]. Frontiers in Microbiology, 2017: 8. doi: 10.3389/fmicb.2017.00351 [38] WANG H J, LIU X C, WANG Y L, et al. Spatial and temporal dynamics of microbial community composition and factors influencing the surface water and sediments of urban rivers[J]. Journal of Environmental Sciences, 2022, 124: 187-197.