-
抗生素在我国被广泛应用于水产、畜牧、养殖、医疗等行业,抗生素滥用造成的环境污染和生态风险越来越受到重视[1]。水产、畜牧、养殖、医疗等行业产生的废水经过处理排入自然水体,由于处理过程中无法去除抗生素污染物,往往会对河流、湖泊造成抗生素污染[2],水源地受到抗生素污染,对人体健康和生态环境会造成严重的危害。
磺胺甲恶唑(C10H11N3O3S,简称SMX)是一种非常典型的磺胺类抗生素,近年来常常在废水、湖泊、河流中被检出[3],因此,去除废水与自然水体中SMX十分重要。不同于传统的化学法、生物法、膜处理法,高级氧化技术(AOPs)处理磺胺类污染物效果好且不会产生二次污染[3]。芬顿法(Fenton)属于高级氧化技术的一种,利用亚铁盐、过氧化氢(H2O2)在催化剂的作用下产生活性羟基自由基(·OH),可以有效去除废水中的SMX[4]。电芬顿反应(electro-Fenton)的原理是溶解氧在阴极接受电子,还原生成H2O2,电芬顿体系能实现H2O2的阴极原位再生,处理过程中不需额外投加H2O2,处理过程易于控制且经济性良好[5-6]。
金属有机骨架(MOFs)是一种由机配体和金属离子组成的新型多孔材料,具有比表面积大、孔隙率高、孔结构可调等优点[7]。近年来,MOFs催化生成羟基自由基从而降解有机物的研究逐渐成为热点[8]。其中铁基MOFs作为芬顿反应催化剂产生·OH已被广泛用于去除水中有机污染物[9]。MIL-88B(Fe)是由对苯二甲酸 (C8H6O4,简称BDC)和铁三聚八面体簇(Fe3-μ3-OXO)构成的一种三维多孔铁基MOFs材料[10],MIL-88B(Fe)作为非均相芬顿催化剂用于催化降解SMX处理效率高、性能优异[11],但单一的MIL-88B(Fe)存在导电性较差的问题。
本文采用有机酸对MIL-88B(Fe)进行刻蚀,在晶体表面构造不饱和金属位点,对MOFs材料的结构和表面性质进行了调控,从而制备出高导电性、高活性且结构稳定的高效自组装的缺陷MOFs催化剂[12],并将制得的缺陷MOFs作为电芬顿催化剂在电芬顿体系下降解水中SMX,并利用扫描电子显微镜(SEM)、X射线衍射技术(XRD)、X射线光电子能谱(XPS)技术对缺陷MOFs催化剂的理化性质进行了表征分析,深入研究了缺陷MOFs催化剂的比表面积、孔结构、电化学性能、降解动力学特征。
甲酸刻蚀缺陷MOFs电芬顿高效降解磺胺甲恶唑
Efficient degradation of SMX by electro-Fenton with Formic acid etching defective MOFs
-
摘要: 采用甲酸刻蚀MIL-88B(Fe)制备了一系列缺陷MOFs并用于催化降解水中磺胺甲恶唑(SMX)为代表的抗生素污染物,通过SEM、XPS、XRD分析手段对材料的形貌和结构进行了表征和分析,考察了pH、电流、SMX初始浓度等因素对SMX去除的影响,探究了SMX催化降解反应的动力学特性以及缺陷MOFs材料的可循环利用性和稳定性,探究了SMX催化降解反应的电流利用效率与能耗,通过自由基淬灭实验推测了SMX催化降解反应发生机理。结果证明,缺陷MOFs材料催化降解SMX性能优于未经刻蚀的MIL-88B(Fe),对于10 mg·L−1 SMX,在电流为40 mA、电压为 3.5 V、持续通氧气、搅拌的条件下,反应120 min后,5 mmol甲酸刻蚀制得的5A-MIL-88(Fe)对SMX的去除率可达98.72%。以5A-MIL-88(Fe)作为催化剂,协同电芬顿(Fenton)反应构建的处理体系为水中抗生素污染物高效去除提供参考。
-
关键词:
- 抗生素污染 /
- MIL-88B(Fe) /
- 缺陷MOFs /
- 电芬顿反应 /
- 磺胺甲恶唑
Abstract: A series of defective MOFs were prepared for Sulfamethoxazole (SMX) catalytic degradation by etching MIL-88B(Fe) with formic acid. The catalyst materials were characterized by SEM, XPS and XRD. The effects of pH, electric current, SMX initial concentration on the catalytic degradation efficiency of SMX were investigated, as well as the kinetic characteristics of SMX catalytic degradation reaction and recycling and stability analysis of defective MOFs. In addition, the current utilization efficiency and energy consumption of SMX catalytic degradation reaction were investigated. Free radical scavenger (EDTA-2Na, IPA, BQ) were used to expose the mechanism of SMX catalytic degradation reaction. The results of SMX degradation experiments prove that the performances of defective MOFs are superior to MIL-88B(Fe) without etching. Under the conditions of 40 mA current, 3.5 V voltage, continuous oxygen and agitation, the degradation efficiency of 10 mg·L−1 SMX could reach 98.72% after 120 min, with the catalytic action of 5A-MIL-88(Fe) etched by 5 mmol formic acid. The treatment system constructed with 5A-MIL-88(Fe) as catalyst and electro-Fenton oxidation reaction as core provides a new idea for the efficient removal of antibiotic contaminants in waste water.-
Key words:
- antibiotic contaminants /
- MIL-88B(Fe) /
- defective MOFs /
- electro-Fenton oxidation /
- SMX
-
-
[1] 林靖钧, 李瑞雪, 林华, 等. 我国水产养殖水体中抗生素的污染特征[J]. 净水技术, 2022, 41(3): 12-19. doi: 10.15890/j.cnki.jsjs.2022.03.002 [2] 张焕军, 王席席, 李轶. 水体中抗生素污染现状及其对氮转化过程的影响研究进展[J]. 环境化学, 2022: 1-14. doi: 10.7524/j.issn.0254-6108.2021091902 [3] 李佳琳, 巨龙, 崔梦, 等. 磺胺类抗生素的污染现状与去除技术研究进展[J]. 安徽农业科学, 2021, 49(21): 27-32. doi: 10.3969/j.issn.0517-6611.2021.21.007 [4] 黄智奔, 陈菊香, 包丽丽, 等. 水中磺胺甲噁唑去除技术的研究进展[J]. 资源节约与环保, 2022(1): 70-73. doi: 10.3969/j.issn.1673-2251.2022.01.020 [5] TIAN Y S, ZHOU M H, PAN Y W, et al. MoS2 as highly efficient co-catalyst enhancing the performance of FeO based electro-Fenton process in degradation of sulfamethazine: Approach and mechanism[J]. Chemical Engineering Journal, 2021, 403: 126361. [6] ZHANG H L, XU Z Y, WANG S L, et al. Preparation of a highly-efficient electro-Fenton cathode material for H2O2 generation and its electrochemical performance in COD removal[J]. International Journal of Electrochemical Science, 2020, 15(12): 12462-12474. [7] XIA T L, LIN Y C, LI W Z, et al. Photocatalytic degradation of organic pollutants by MOFs based materials: A review[J]. Chinese Chemical Letters, 2021, 32(10): 2975-2984. doi: 10.1016/j.cclet.2021.02.058 [8] LIU X, ZHOU Y, ZHANG J, et al. Iron containing metal-organic frameworks: Structure, synthesis, and applications in environmental remediation[J]. ACS applied materials & interfaces, 2017, 9(24): 20255-20275. [9] SUN Q, LIU M, LI K, et al. Facile synthesis of Fe-containing metal-organic frameworks as highly efficient catalysts for degradation of phenol at neutral pH and ambient temperature[J]. CrystEngComm, 2015, 17(37): 7160-7168. doi: 10.1039/C5CE01375E [10] MA M Y, NOEI H, MIENERT B, et al. Iron metal organic frameworks MIL-88B and NH2-MIL-88B for the loading and delivery of the gasotransmitter carbon monoxide[J]. Chemistry:A European Journal, 2013, 19(21): 6785-679. doi: 10.1002/chem.201201743 [11] 王楠楠, 张巍, 修光利. MIL-88B(Fe)非均相芬顿催化降解磺胺甲恶唑[J]. 环境污染与防治, 2020, 42(6): 682-689. doi: 10.15985/j.cnki.1001-3865.2020.06.006 [12] 杨康. MOFs及其复合材料的制备及电化学性能研究[D]. 镇江: 江苏大学, 2020. [13] LI X R, HE X B, YIN F X, et al. NH2-MIL-88B-Fe for electrocatalytic N2 fixation to NH3 with high faradaic efficiency under ambient conditions in neutral electrolyte[J]. Journal of Materials Science, 2020, 55(26): 12041-12052. doi: 10.1007/s10853-020-04777-2 [14] 沈意, 许俊杰, 朱超, 等. 缺陷化金属有机骨架材料的合成及其污染控制应用[J]. 科学通报, 2021, 66(23): 2943-2957. [15] CAI L F, CHEN J J, CHANG L, et al. Adhesion mechanisms and electrochemical applications of microorganisms onto a GO-NH2 modified carbon felt electrode material[J]. Industrial & Engineering Chemistry Research, 2021, 60(11): 4321-4331. [16] SHI L, WANG T, ZHANG H B, et al. An amine-functionalized iron (III) metal-organic framework as efficient visible-light photocatalyst for Cr (VI) reduction[J]. Advanced Science, 2015, 2(3): 1500006. [17] YI Q Y, DU M M, SHEN B, et al. Hollow Fe3O4/carbon with surface mesopores derived from MOFs for enhanced lithium storage performance[J]. Science Bulletin, 2020, 65(3): 233-242. doi: 10.1016/j.scib.2019.11.004 [18] HU X B, LIU B Z, DENG Y H, et al. Adsorption and heterogeneous Fenton degradation of 17α-methyltestosterone on nano Fe3O4/MWCNTs in aqueous solution[J]. Applied Catalysis B:Environmental, 2011, 107(3): 274-283. [19] LI X, PI Y, WU L, et al. Facilitation of the visible light-induced Fenton-like excitation of H2O2 via heterojunction of g-C3N4/NH2-Iron terephthalate metal-organic framework for MB degradation[J]. Applied Catalysis B:Environmental, 2017, 202: 653-663. doi: 10.1016/j.apcatb.2016.09.073 [20] LAURIER K, VERMOORTELE F, AMELOOT R, et al. Iron (III)-based metal-organic frameworks as visible light photocatalysts[J]. Journal of American Chemical Society, 2013, 135(39): 14488-14491. doi: 10.1021/ja405086e [21] WANG Y X, ZHONG Z, MUHAMMAD Y, et al. Defect engineering of NH2 -MIL-88B(Fe) using different monodentate ligands for enhancement of photo-Fenton catalytic performance of acetamiprid degradation[J]. Chemical Engineering Journal, 2020, 398: 125684. [22] XU B, YANG H, CAI Y, et al. Preparation and photocatalytic property of spindle-like MIL-88B(Fe) nanoparticles[J]. Inorganic Chemistry Communications, 2016, 67: 29-31. doi: 10.1016/j.inoche.2016.03.003 [23] HE H, WANG Y X, LI J, et al. Confined conductive and light-adsorbed network in metal organic frameworks (MIL-88B(Fe)) with enhanced photo-Fenton catalytic activity for sulfamethoxazole degradation[J]. Chemical Engineering Journal, 2021, 427: 131962. [24] 王爱民, 曲久辉, 史红星, 等. 活性碳纤维阴极电芬顿反应降解微囊藻毒素研究[J]. 高等学校化学学报, 2005, 26(9): 1669-1672. doi: 10.3321/j.issn:0251-0790.2005.09.013 [25] ZHAO M C, MAO X D, LI R X, et al. In-situ slow production of Fe2+ to motivate electro-Fenton oxidation of bisphenol A in a flow through dual-anode reactor using current distribution strategy: Advantages, CFD and toxicity assessment[J]. Electrochimica Acta, 2022: 411. [26] ZHANG Y, LI G, LU H, et al. Synthesis, characterization and photocatalytic properties of MIL-53(Fe)-graphene hybrid materials[J]. RSC Advances, 2014, 4(15): 7594-7600. doi: 10.1039/c3ra46706f [27] LI J H, WANG Y S, CHEN Y C, et al. Metal-organic frameworks toward electrocatalytic applications[J]. Applied Sciences-Basel, 2019, 9(12): 2427. doi: 10.3390/app9122427 [28] ZHOU J, DOU Y B, WU X Q, et al. Alkali-etched Ni (II)-based metal-organic framework nanosheet arrays for electrocatalytic overall water splitting[J]. SMALL, 2020, 16(41): 1906564. doi: 10.1002/smll.201906564 [29] 谢欣卓, 钟金魁, 李静, 等. 四氧化三铁负载纳米零价铁类Fenton法降解水中磺胺甲恶唑[J/OL]. 中国环境科学: 1-11. DOI: 10.19674/j.cnki.issn1000-6923.20220314.014. [30] 曾佚浩, 陈运进, 卢耀斌, 等. Cu-Co双金属氢氧化物非均相类芬顿催化剂去除磺胺甲恶唑[J]. 环境工程学报, 2020, 14(9): 2474-2484. doi: 10.12030/j.cjee.202001014 [31] NGUYEN B, HUANG C P, DOONG R A, et al. Visible-light photodegradation of sulfamethoxazole (SMX) over Ag-P-codoped g-C3N4 (Ag-P@UCN) photocatalyst in water[J]. Chemical Engineering Journal, 2019: 384. [32] SHEIJKI S, JEBALBAREZI B, DEHGHANZADEH R, et al. Sulfamethoxazole oxidation in secondary treated effluent using Fe (VI)/PMS and Fe (VI)/H2O2 processes: Experimental parameters, transformation products, reaction pathways and toxicity evaluation[J]. Journal of Environmental Chemical Engineering, 2022, 10(3). [33] FU A, LIU Z B, SUN Z R, et al. Cu/Fe oxide integrated on graphite felt for degradation of sulfamethoxazole in the heterogeneous electro-Fenton process under near-neutral conditions[J]. Chemosphere, 2022: 297.