-
黑臭水体作为一种极端的水体污染现象,指的是在城市建成区的水体中呈现令人不悦的颜色和(或)散发令人不适气味的统称[1-3],其不仅影响城市景观生态、破坏水生态系统,而且对城市居民的生产生活也有很大危害[4-7]。“十三五”期间,全国各地大力整治城市建成区黑臭水体,取得了显著成效。及时、准确识别黑臭水体并掌握其时空的分布规律,是加强各地黑臭水体治理过程动态监管和治理效果评价的重要依据。
针对黑臭水体的识别,传统方法是在河道、湖泊等水域内取样,通过实验室检测,根据各特征指标的浓度阈值判定黑臭水体级别[8-10]。该方法简单、准确性高,但其时效性差、成本高。同时,受水体面积大且水质易变化等特征的影响,传统的筛查方式已明显不能满足大范围、快速定位以及动态反映水质变化的需求。而遥感技术作为一种大范围的监测手段,与传统做法相比,具有低成本、覆盖广、速度快等优势,已经被广泛用于水环境监测领域[11-19]。
遥感影像数据识别不同水质水体的基本原理是:不同水体中各组分及含量的不同,会造成太阳辐射能量的吸收特性和散射特性的差别,遥感技术将测量得到的电磁反射信息转变为水体的光学特性(反射率、灰度及色阶等信息),再由水体光学特性反向推导,从而得到水体各组分含量[20-26],进而判定水质情况。随着国内外学者对遥感识别水体水质研究的不断深入,涌现了各种识别算法。这些识别算法分为目视解译、参量模型和机器学习3类。针对目视解译,内业人员在影像数据上识别疑似黑臭水体,再由外业人员进行现场复核,最终确定黑臭水体位置和范围。该方法准确度高,但是效率低,受主观因素影响较大。针对参量模型法,借助影像数据中1个或多个参数,建立其与黑臭水体的光学特征的关系函数来达到识别的目的。曹红业[9]基于实测遥感反射率构建了黑臭水体识别饱和度法和光谱指数法,建立黑臭水体水质参数与黑臭水体指数之间的相关关系;马跃良等[20]通过建立Landsat TM影像各波段灰度值与综合污染指数之间的回归关系,预测水质污染指数;王云鹏等[21]分析了不同水质水体可见光-近红外光谱与水质指标的关系,并通过对遥感影像进行变换和分类处理,区分水体水质;靳海霞等[22]利用高分二号(GF-2)卫星融合影像进行水质参数反演,利用水质参数浓度构建综合营养状态指数来判定河流黑臭情况;温爽等[23-24]根据黑臭水体光学特性提出了波段比值法,利用GF2影像构建了黑臭水体识别模型。针对机器学习,是指用大量的数据或以往的经验来“训练”,挖掘出其中隐含的规律(或称之为“知识”)并辅助决策和预测。该方法不需要过多地人为干预,而且时间效率高。近年来,机器学习在网络架构、训练策略和优化功能方面性能不断提升,使其在人脸识别、文本检测等目标识别领域扮演着越来越重要的角色[25-26]。但是,机器学习用于水体水质的识别方面研究还较少。何红术[27]利用GF-2影像数据,基于改进U-Net网络对青岛市黑臭水体进行识别,整体识别准确率最高达87.04%;邵琥翔等[28]使用PSPNet和U-Net模型对河北省廊坊市的黑臭水体进行对比实验研究,精确率达到85.02%。
黑臭水体的形成机制十分复杂,受污染物种类和环境等多种因素的影响[29-33]。其主要影响因素可归纳为污染物排放、内源污染和水动力条件等几类。污染物排放是黑臭水体形成的直接原因,其主要来自生活污水、工业废水、畜禽养殖场排放等。这些物质进入水体后,导致水中的溶解氧被大量消耗,在一定温度条件下,厌氧微生物大量繁殖,将复杂有机物分解,产生臭味和黑色悬浮物。内源污染是黑臭水体形成的重要因素,是指在水力冲刷、微生物活动的影响下,蓄积在底泥中的污染物通过矿化作用、扩散作用进入水体,进而加剧水体黑臭现象。水动力条件不足也是黑臭水体形成的重要因素之一,水量不足且流速低缓导致污水滞留、垃圾沉淀、水体富氧速率衰减,使水体自净能力减弱,从而形成黑臭水体。然而现有的黑臭水体的影响因素分析多停留在定性描述,影响因素与黑臭水体的定量关系的研究鲜有报道。
本研究以北京市为主要研究区域,基于“北京二号”影像数据和实验室检测水样数据,采用Faster R-CNN算法动态监测治理期间(2015—2018年)的黑臭水体时空变化情况,定量分析河网、地形、土壤、生活垃圾和畜禽养殖场排放等因素对黑臭水体形成的贡献率,旨在为城市黑臭水体动态监测和治理提供参考。
北京市黑臭水体治理的动态遥感监测及影响因素分析
Dynamic remote sensing monitoring and its influence factors analysis for urban black and odorous water body management and treatment in Beijing, China
-
摘要: 为及时、准确掌握黑臭水体治理进展,基于“北京二号”影像数据和同期的野外综合水体实测数据,采用深度学习算法对黑臭水体进行识别,并引入地理探测器对黑臭水体影响因素进行定量分析。结果表明:基于Faster R-CNN算法的黑臭水体遥感识别,总准确率达到90%左右,短时间内(5~33 h)即可完成北京市建成区黑臭水体的筛查工作;在空间维度上,黑臭水体主要分布在中心城区以外,并在通州区、朝阳区和大兴区较为集中;在时间维度上,专项治理期间(2015—2018年)内,黑臭水体的数量和长度总体趋势都是递减的,但偶尔也有反黑现象;2018年底,在全市建成区范围内,已全面消除黑臭现象;在一年内,第1季度水体环境最好,第2季度次之,第3季度最差,从第4季度开始好转;在北京市大兴区,土壤全氮量(贡献率为32.07%)和周边养殖场排污(贡献率为27.04%)是黑臭水体形成的主要影响因素,高程(贡献率为8%)、土壤类型(贡献率为7.6%)和土地利用类型(贡献率为6.1%)的贡献率较弱。由此可以看出,基于Faster R-CNN算法识别影像中的黑臭水体识别准确率高,可及时、准确地监测城市黑臭水体治理情况,使用地理探测器可定量分析并确定各影响因素的贡献率。本研究成果可为城市黑臭水体的动态监测和治理提供有力的技术支撑。Abstract: To timely and accurately grasp the progress of black and odorous water body management and treatment, as well as its spatial-temporal distribution, based on the "Beijing No.2" image data and the field monitoring data of surface water quality detected at the same time, the deep learning algorithm was used to identify the black and odorous water body with different water quality, and the geographic detector was introduced to quantitatively analyze the causes of black and odorous water bodies. The results show that: the total accuracy of the remote sensing identification of the black and odorous water body based on fast r-cnn algorithm was about 90%, and the screening of the black and odorous water body in the built-up areas in Beijing could be fulfilled within a few hours. In spatial dimension, the black and odorous water body mainly distributed outside the central city, and concentrated in the North Canal and Daqinghe River Basin. In temporal dimension within special treatment, the number and length of black and odorous water generally decreased, while the back to black and odorous water body occurred occasionally. At the end of 2018, the black and odorous water bodied were eliminated in the built-up areas in Beijing. Among the four quarters of one year, the best water environment occurred in the first quater, and then was the second quater, the worst was the third quarter and it changed better in the four quarter. Daxing District was selected as the representative to analyze its causes, and eight indicators of internal and external sources were selected as risk factors. The soil nitrogen content(contribution rate of 32.07%) and sewage discharge from surrounding livestock farm (contribution rate of 27.04%)were the dominant factors, while altitude(contribution rate of 8%), soil type(contribution rate of 7.6%) and land use(contribution rate of 6.1%) contributed less to the black and odorous water body. Therefore, it could accurately identify black and odorous water body in high-resolution remote sensing images based on fast r-cnn algorithm, the technical framework is simple, which will help to timely and comprehensively grasp the distribution and treatment progress of black and odorous water body. At the same time, the quantitative analysis of the causes of black and odorous water body also provides a strong technical support for urban black and odorous water remediation.
-
表 1 不同水质水体检测结果
Table 1. Accuracy detection of water bodies with different water quality
类型 识别正确点位/个 识别错误点位/个 合计点位/个 正常水体 26 4 30 轻度黑臭 44 9 53 重度黑臭 109 8 117 表 2 算法对比分析
Table 2. Comparative analysis of algorithms
方法 平均精度均值mAP/% 速度/(张·s−1) SSD 92 10 YOLO 94 12 Faster R-CNN算法 93 18 表 3 黑臭水体的各影响因素的贡献率
Table 3. Contribution rate of influence factors to black and odorous water body
序号 影响因素 贡献率/% 1 土壤全氮量 32.07 2 与最近养殖场的距离 27.04 3 与最近排污口的距离 12.5 4 河网密度 11.65 5 人口密度 9.5 6 高程 8 7 土壤类型 7.6 8 土地利用 6.1 -
[1] 住房城乡建设部, 环境保护部. 城市黑臭水体整治工作指南[EB/OL]. (2015-08-28)[2022-06-17]. http://www.mohurd.gov.cn/wjfb/201509/t20150911_224828.html. [2] 吕佳佳. 黑臭水形成的水质和环境条件研究[D]. 武汉: 华中师范大学, 2011. [3] 谢飞, 吴俊锋. 城市黑臭河流成因及治理技术研究[J]. 污染防治技术, 2016, 29(1): 1-3. [4] 王旭, 王永刚, 孙长虹, 等. 城市黑臭水体形成机理与评价方法研究进展[J]. 应用生态学报, 2016, 27(4): 1331-1340. [5] 刘莹. 巢湖蓝藻富营养化监测与预警优化研究[D]. 合肥: 合肥工业大学, 2012. [6] 李张卿, 宋桂杰, 李晓. 深圳市白花河黑臭水体综合治理技术探讨[J]. 给水排水, 2018, 44(7): 47-50. doi: 10.3969/j.issn.1002-8471.2018.07.011 [7] 卢信, 冯紫艳, 商景阁, 等. 不同有机基质诱发的水体黑臭及主要致臭物(VOSCs)产生机制研究[J]. 环境科学, 2012, 33(9): 3152-3159. [8] 魏文龙, 荆红卫, 华蕾, 等. 北京市城市河道水体黑臭分级评价研究[J]. 环境科学与技术, 2016, 39(S2): 407-412. [9] 曹红业. 中国典型城市黑臭水体光学特性分析及遥感识别模型研究[D]. 成都: 西南交通大学, 2017. [10] 陶亮, 周东, 刘翠珠. 北京市黑臭水体监测评价与分析[J]. 北京水务, 2016(1): 21-23. [11] PALMER S C J, KUTSER T, HUNTER P D. Remote sensing of inland waters: Challenges, progress and future directions[J]. Remote Sensing of Environment, 2015, 157: 1-8. [12] DEKKER A G, VOS R J, PETERS S W. Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes.[J]. Science of the Total Environment, 2001, 268(1/2/3): 197-214. [13] KUSTER T. The possibility of using the Landsat image archive for monitoring long time trends in coloured dissolved organic matter concentration in lake waters[J]. Remote Sensing of Environment, 2012, 123(3): 334-338. [14] WANG M, SHI W, TANG J. Water property monitoring and assessment for China's inland Lake Taihu from MODIS-Aqua measurements[J]. Remote Sensing of Environment, 2011, 115(3): 841-854. [15] TURNER R E, RABALAIS N N. Linking landscape and water quality in the Mississippi river basin for 2000 years[J]. Bioscience, 2003, 53: 563-572. [16] 张兵, 申茜, 李俊生, 等. 太湖水体3种典型水质参数的高光谱遥感反演[J]. 湖泊科学, 2009, 21(2): 182-192. doi: 10.3321/j.issn:1003-5427.2009.02.005 [17] 祝令亚. 湖泊水质遥感监测与评价方法研究[D]. 北京: 中国科学院研究生院(遥感应用研究所), 2006. [18] 肖潇, 徐坚, 赵登忠, 等. 汉江中下游典型河段水环境遥感评价[J]. 长江科学院院报, 2016, 33(1): 31-37. doi: 10.11988/ckyyb.20150100 [19] 姚俊, 曾祥福, 益建芳. 遥感技术在上海苏州河水污染监测中的应用[J]. 影像技术, 2003, 15(2): 3-7. doi: 10.3969/j.issn.1001-0270.2003.02.001 [20] 马跃良, 王云鹏, 贾桂梅. 珠江广州河段水体污染的遥感监测应用研究[J]. 重庆环境科学, 2003, 25(3): 13-16. [21] 王云鹏, 闵育顺, 傅家谟, 等. 水体污染的遥感方法及在珠江广州河段水污染监测中的应用[J]. 遥感学报, 2001, 5(6): 460-465. doi: 10.11834/jrs.20010610 [22] 靳海霞, 潘健. 基于高分二号卫星融合数据的城镇黑臭水体遥感监测研究[J]. 国土资源科技管理, 2017, 34(4): 107-117. [23] 温爽. 基于GF-2影像的城市黑臭水体遥感识别: 以南京市为例[D]. 南京: 南京师范大学, 2018. [24] 温爽, 王桥, 李云梅, 等. 基于高分影像的城市黑臭水体遥感识别: 以南京为例[J]. 环境科学, 2018, 39(1): 57-67. [25] 张亭禄, 邱国强. 基于辐射传递模拟及人工神经网络技术的二类水体光学组分的反演[J]. 湖泊科学, 2009, 21(2): 173-181. doi: 10.3321/j.issn:1003-5427.2009.02.004 [26] 马雪梅, 雷秀丽, 李希峰, 等. 基于数据挖掘技术的流域不透水面及变化信息提取[J]. 测绘通报, 2007(12): 34-37. doi: 10.3969/j.issn.0494-0911.2007.12.010 [27] 何红术. 基于改进U-Net网络遥感语义分割的城市黑臭水体识别[D]. 北京: 中国科学院大学(中国科学院空天信息创新研究院), 2020. [28] 邵琥翔, 丁凤, 杨健, 等. 基于深度学习的黑臭水体遥感信息提取模型[J]. 长江科学院院报, 2022, 39(4): 156-162. doi: 10.11988/ckyyb.20210045 [29] 许国. 基于河网特征的北京市河长制分级管理若干问题研究[D]. 郑州: 华北水利水电大学, 2018. [30] 张强. 浅谈土地利用对水环境的影响[J]. 国土资源, 2015(18): 180-182. [31] 卢学伟. 田庄水库内源氮释放与外源氮淋滤行为研究[D]. 青岛: 中国海洋大学, 2007. [32] AYTEN E, TIMOTHY O R. Watershed ecosystem modeling of landuse impacts on water quality[J]. Ecological Modelling, 2013, 270: 54-63. [33] JIANG Y J, YUAN D X, XIE S Y. Groundwater quality and landuse change in a typical karst agricultural region: a case study of Xiaojiang watershed, Yunnan[J]. Journal Geographical Sciences 2006, 16(4): 405-414. [34] 北京市人民政府. 北京市加快污水治理和再生水利用设施建设三年行动方案(2013-2015年): 京政发[2013]14号[A]. 北京, 2013. [35] 北京市人民政府. 北京市进一步加快推进污水治理和再生水利用工作三年行动方案(2016年7月-2019年6月): 京政发[2016]17号[A]. 北京, 2016. [36] 李傲, 皇甫润. 北京二号遥感影像平面精度分析[J]. 北京测绘, 2019, 33(5): 518-523. [37] 吴礼树. 土壤肥力学[M]. 北京: 中国农业出版社, 2004. [38] 北京市大兴区史志办公室. 北京市大兴区统计年鉴[A]. 北京, 2015. [39] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149. [40] 桑军, 郭沛, 项志立, 等. Faster R-CNN 的车型识别分析[J]. 重庆大学学报, 2017, 40(7): 32-36. doi: 10.11835/j.issn.1000-582X.2017.07.005 [41] 李东子, 范大昭, 苏亚龙. 结合Faster R-CNN模型的遥感影像建筑物检测[J]. 测绘科学技术学报, 2018, 35(4): 389-394. [42] 曹之君, 张良. 基于Faster R-CNN的快速目标检测算法[J]. 航天控制, 2020, 38(4): 49-55. doi: 10.3969/j.issn.1006-3242.2020.04.008 [43] 王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134. doi: 10.11821/dlxb201701010 [44] 徐秋蓉, 郑新奇. 一种基于地理探测器的城镇扩展影响机理分析法[J]. 测绘学报, 2015, 44(Z1): 96-101. [45] 湛东升, 张文忠, 余建辉, 等. 基于地理探测器的北京市居民宜居满意度影响机理[J]. 地理科学进展, 2015, 34(8): 966-975. [46] 廖颖, 王心源, 周俊明. 基于地理探测器的大熊猫生境适宜度评价模型及验证[J]. 地球信息科学学报, 2016, 18(6): 767-778.