-
排水管道是收集和传输污水至污水处理厂的重要基础设施。管道中复杂的环境特征,可能会产生CH4、H2S及N2O等气体。传统上,排水管道以重力流为主 (~95%) ,在该环境下管底厌氧与顶空好氧环境并存,故周圈管道壁会形成不同厚度的生物膜。而在特殊情况下 (~5%) ,排水有时会采用压力流方式输送,此时的管道内只存在厌氧环境[1]。重力流排水管道因顶空存在氧 (O2) 而使得管壁形成的生物膜与压力流完全不同,其顶空生物膜往往因氧传质作用而形成外层好氧、中层缺氧、内层厌氧环境,而被水淹没管壁生物膜一般为缺氧或厌氧环境[2]。生物膜厌氧环境会导致甲烷 (CH4) 和硫化氢 (H2S) 气体产生,而好氧环境则会诱发硝化、随后缺氧反硝化,从而导致氧化亚氮 (N2O) 产生[3]。N2O是强温室气体 (温室效应是CO2的265倍) ,大气中N2O质量浓度增加与全球变暖、臭氧层破坏和酸雨三大环境问题密切相关,具有很强的环境破环能力[3];CH4也是强温室气体,其温室效应是CO2的28倍,同时与H2S一样是容易出现安全隐患的有毒、有害、腐蚀性或易爆性气体[3]。面对我国“双碳”目标以及现实中频发的检查井燃爆 (CH4) 与清淤致死 (H2S) 事故,有必要厘清产生这3种有害气体的路径与机理,同时提出控制其产生的策略。
排水管道内生化反应主要发生于管壁生物膜与底部沉积物中,是CH4、H2S及N2O等气体产生的主要位点。而水相与气相生物量作用相对较小,其气体产生概率几乎可以忽略不计[4]。污水中所含有机物 (COD) 、氮 (N) 和硫酸盐 (SO42−) 是产生这些气体的主要根源,产生的气体往往不可控而又常被忽略。本文综述上述各气体产生机理,并基于机理提出相应的气体减排策略,为进一步碳减排提供参考。
排水管道中CH4、H2S与N2O的产生机制及其控制策略
Production mechanism and control strategy of CH4 , H2S and N2O in drainage pipeline
-
摘要: 排水管道厌氧环境会产生甲烷 (CH4) 与硫化氢 (H2S) ,而好氧及缺氧环境又会诱发氧化亚氮 (N2O) 。污水中所含有机物 (COD) 、氮 (N) 和硫酸盐 (SO42−) 是产生这些气体的主要根源。系统综述了3种有害气体的产生机理,厘清污水中污染物、管道中微生物及管道环境对有害气体产生的影响。基于此,有针对性地提出了这几类气态污染物的控制策略。其中,对CH4与H2S的抑制手段集中在向管道中投加药剂以限制其产生源头,然而投加NO3−或NO2−药剂与通入氧气这两种控制手段可能会导致N2O这种温室气体的大量产生。因此,应充分了解排水管道中各复杂因素之间的相互作用,以实现对有害污染气体的控制,并实现碳减排的目标。Abstract: Anaerobic environment in drainage pipeline can produce methane (CH4) and hydrogen sulfide (H2S), while aerobic and anoxic environments will induce nitrous oxide (N2O). Chemical oxygen demand (COD), nitrogen (N) and sulfates (SO2-4) contained in wastewater are the major sources of these gases. The production mechanism of three kinds of harmful gases was systematically reviewed, and the effects of pollutants in wastewater, microorganisms in pipeline and pipeline environment on the production of harmful gases were identified. Based on this, the control strategies of these gaseous pollutants were respectively proposed. Among them, the inhibition measures of CH4 and H2S were focused on adding chemical agents to the pipeline to limit the source control of production. However, the addition of NO-3/NO-2 agents and oxygen injection might lead to large production of N2O, which was a kind of greenhouse gas. Therefore, it is necessary to fully understand the interaction between the complicated controlling factors in the dainage pipeline, so as to achieve the control of harmful pollution gases and chieve the goal of carbon reduction.
-
表 1 排水管道中CH4、H2S及N2O气体产生质量浓度范围
Table 1. Mass concentration ranges of CH4 , H2S and N2O gases in drainage pipeline
-
[1] ZUO Z Q, REN D H, QIAO L G, et al. Rapid dynamic quantification of sulfide generation flux in spatially heterogeneous sediments of gravity sewers[J]. Water Research, 2021, 203: 117494. doi: 10.1016/j.watres.2021.117494 [2] LI W K, ZHENG T L, MA Y Q, et al. Current status and future prospects of sewer biofilms: their structure, influencing factors, and substance transformations[J]. Science of the Total Environment, 2019, 695: 133815. doi: 10.1016/j.scitotenv.2019.133815 [3] EIJO-RÍO E, PETIT-BOIX A, VILLALBA G, et al. Municipal sewer networks as sources of nitrous oxide, methane and hydrogen sulphide emissions: a review and case studies[J]. Journal of Environmental Chemical Engineering, 2015, 3(3): 2084-2094. doi: 10.1016/j.jece.2015.07.006 [4] MOHANAKRISHNAN J, GUTIERREZ O, SHARMA K R, et al. Impact of nitrate addition on biofilm properties and activities in rising mainsewers[J]. Water Research, 2009, 43(17): 4225-4237. doi: 10.1016/j.watres.2009.06.021 [5] ZHANG L H, SCHRYVER P D, GUSSEME B D, et al. Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: a review[J]. Water Research, 2008, 42(1-2): 1-12. doi: 10.1016/j.watres.2007.07.013 [6] LIU Y W, NI B J, SHARMA K R, et al. Methane emission from sewers[J]. Science of the Total Environment, 2015, 524-525: 40-51. doi: 10.1016/j.scitotenv.2015.04.029 [7] SUN J, HU S, SHARMA K R, et al. Stratified microbial structure and activity in sulfide-and methane-producing anaerobic sewer biofilms[J]. Applied Environmental Microbiology, 2014, 80(22): 7042-7052. doi: 10.1128/AEM.02146-14 [8] CHAOSAKUL T, KOOTTATEP T, POLPRASERT C, et al. A model for methane production in sewers[J]. Environmental Science Health A, 2014, 49(11): 1316-1321. doi: 10.1080/10934529.2014.910071 [9] SCHREIBER L, HOLLER T, KNITTEL K, et al. Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the anme-2 clade[J]. Environmental Microbiology, 2010, 12(8): 2327-2340. [10] 郝晓地. 可持续污水-废物处理技术[M]. 北京: 中国建筑工业出版社, 2006: 279-286 [11] MUYZER G, STAMS A J M. The ecology and biotechnology of sulphate-reducing bacteria[J]. Nature Reviews Microbiology, 2008, 6: 441-454. doi: 10.1038/nrmicro1892 [12] AUGUET O, PIJUAN M, BORREGO C M, et al. Control of sulfide and methane production in anaerobic sewer systems by means of downstream nitrite dosage[J]. Science of the Total Environment, 2016, 550: 1116-1125. doi: 10.1016/j.scitotenv.2016.01.130 [13] OVIEDO E R, JOHNSON D, SHIPLEY H. Evaluation of hydrogen sulphide concentration and control in a sewer system[J]. Environmental Technology, 2011, 33(10): 1207-1215. [14] ZUO Z Q, CHANG J, LU Z S. Hydrogen sulfide generation and emission in urban sanitary sewer in China: What factor plays the critical role?[J]. Environmental Science Water Research & Technology, 2019, 5: 839-848. [15] SHORT M D, DAIKELER A, PETERS G M, et al. Municipal gravity sewers: An unrecognised source of nitrous oxide[J]. Science of the Total Environment, 2014, 468-469: 211-218. doi: 10.1016/j.scitotenv.2013.08.051 [16] CHEN H B, ZENG L, WANG D B, et al. Recent advances in nitrous oxide production and mitigation in wastewater treatment[J]. Water Research, 2020: 184. [17] KIM S W, MIYAHARA M, FUSHINOBU S, et al. Nitrous oxide emission from nitrifying activated sludge dependent on denitrification by ammonia-oxidizing bacteria[J]. Bioresource Technology, 2010, 101: 3958-3963. doi: 10.1016/j.biortech.2010.01.030 [18] LAW Y Y, YE L, PAN Y T, et al. Nitrous oxide emissions from wastewater treatment processes[J]. Philosophical Transactions of The Royal Society B, 2012, 367: 1265-1277. doi: 10.1098/rstb.2011.0317 [19] SCHREIBER F, WUNDERLIN P, UDERT M K. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions, and novel technologies[J]. Frontiers in Microbiology, 2012, 3: 372. [20] CARANTO J D, VILBERT A C, LANCASTER K M. Nitrosomonas europaea cytochrome p460 is a direct link 886 between nitrification and nitrous oxide emission[J]. National Acad Science, 2016, 113: 14704-14709. doi: 10.1073/pnas.1611051113 [21] UPADHYAY A K, HOOPER A B, HENDRICH M P. NO reductase activity of the tetraheme cytochrome c554 of nitrosomonas europaea[J]. American Chemistry Society, 2006, 128: 4330-4337. doi: 10.1021/ja055183+ [22] STEIN L. Surveying N2O-producing pathways in bacteria[J]. Methods in Enzymology, 2011, 486: 131-152. [23] WUNDERLIN P, MOHN J, JOSS A, et al. Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions[J]. Water Research, 2012, 46(4): 1027-1037. doi: 10.1016/j.watres.2011.11.080 [24] SOLER-JOFRA A, PEREZ J, VAN LOOSDRECHT M C M. Hydroxylamine and the nitrogen cycle: a review[J]. Water Research, 2021: 190. [25] ZHANG G J, PANG Y, ZHOU Y C, et al. Effect of dissolved oxygen on N2O release in the sewer system during controlling hydrogen sulfide by nitrate dosing[J]. Science of the Total Environment, 2022, 816: 151581. doi: 10.1016/j.scitotenv.2021.151581 [26] CASCIOTTI K L, WARD B B. Dissimilatory nitrite reductase genes from autotrophic ammonia-oxidizing bacteria[J]. Applied and Environmental Microbiology, 2001, 67(5): 2213-2221. doi: 10.1128/AEM.67.5.2213-2221.2001 [27] POTH M, POCHT D D. 15N kinetic analysis of N2O production by nitrosomonas europaea: an examination of nitrifier denitrification[J]. Applied and Environmental Microbiology, 1985, 49(5): 1134-1141. doi: 10.1128/aem.49.5.1134-1141.1985 [28] NI B, YUAN Z G, CHANDRAN K, et al. Evaluating four mathematical models for nitrous oxide production by autotrophic ammonia-oxidizing bacteria[J]. Biotechnology and Bioengineering, 2013, 110(1): 153-163. doi: 10.1002/bit.24620 [29] YU R, KAMPSCHREYR M J, VAN LOOSDRECHT M C, et al. Mechanisms and specific directionality of autotrophic nitrous oxide and nitric oxide generation during transient anoxia[J]. Environmental Science and Technology, 2010, 44(4): 1313-1319. doi: 10.1021/es902794a [30] JIANG G, SHARMA K R, YUAN Z. Effects of nitrate dosing onmethanogenic activity in a sulfide-producing sewer biofilmreactor[J]. Water Research, 2013, 47(5): 1783-1792. doi: 10.1016/j.watres.2012.12.036 [31] JIANG G, SHARMA K R, GUISASOLA A, et al. Sulfur transformation in rising main sewers receiving nitrate dosage[J]. Water Research, 2010, 43(17): 4430-4440. [32] BENTZEN G, SMIT A T, BENNETT D, et al. Controlled dosing of nitrate for prevention of H2S in a sewer network and the effects on the subsequent treatment processese[J]. Water Science and Technology, 1995, 31(7): 293-302. doi: 10.2166/wst.1995.0245 [33] AUGUET O, PIJUAN M, GUASCH-BALCELLS H, et al. Implications of downstream nitrate dosage in anaerobic sewers to control sulfide and methane emissions[J]. Water Research, 2015, 68: 522-532. doi: 10.1016/j.watres.2014.09.034 [34] GANIGUÉ R, YUAN Z. Impact of oxygen injection on CH4 and N2O emissions from rising main sewers[J]. Journal of Environmental Management, 2014, 144: 279-285. doi: 10.1016/j.jenvman.2014.04.023 [35] JIANG G M, GUTIERREZ O, YUAN Z G, et al. Effects of nitrite concentration and exposure time on sulfide and methane production in sewer systems[J]. Water Research, 2010, 44(14): 4241-4251. doi: 10.1016/j.watres.2010.05.030 [36] HAVEMAN S A, GREENE E A, STILWELL C P, et al. Physiological and gene expression analysis of inhibition of desulfovibrio vulgaris hildenborough by nitrite[J]. Journal of Bacteriology, 2004, 186(23): 7944-7950. doi: 10.1128/JB.186.23.7944-7950.2004 [37] PARK K, LEE H, PHELAN S, et al. Mitigation strategies of hydrogen sulphide emission in sewer networks: a review[J]. International Biodeterioration & Biodegradation, 2014, 95: 251-261. [38] ZHANG L, KELLER J, YUAN Z. Inhibition of sulfate-reducing and methanogenic activities of anaerobic sewer biofilms by ferric iron dosing[J]. Water Research, 2009, 43(17): 4123-4132. doi: 10.1016/j.watres.2009.06.013 [39] YAN X F, SUN J, DAI X H. Rapid and strong biocidal effect of ferrate on sulfidogenic and methanogenic sewer biofilms[J]. Water Research, 2020, 169: 115208. doi: 10.1016/j.watres.2019.115208 [40] YANG K, LI Z H, ZHANG H Y. Municipal wastewater phosphorus removal by coagulation[J]. Environmental technology, 2010, 31(6): 601-609. doi: 10.1080/09593330903573223 [41] GUTIERREZ O, SUDARJANTO G, REN G, et al. Assessment of ph shock as a method for controlling sulfide and methane formation in pressure main sewer systems[J]. Water Research, 2014, 48: 569-578. doi: 10.1016/j.watres.2013.10.021 [42] GUTIERREZ O, PARK D, SHARMA K R, et al. Effects of long-term ph elevation on the sulfate-reducing and methanogenic activities of anaerobic sewer biofilms[J]. Water Research, 2009, 43(9): 2549-2557. doi: 10.1016/j.watres.2009.03.008 [43] HYNES R K, KNOWLES R. Production of nitrous oxide by Nitrosomonas europaea: effects of acelylene, ph, oxygen[J]. Canadian Journal of Microbiology, 1984, 30(11): 1397-1404. doi: 10.1139/m84-222 [44] THÖRN M, SÖRENSSON F. Variation of nitrous oxide formation in the denitrification basin in a wastewater treatment plant with nitrogen removal[J]. Water Research, 1996, 30(6): 1543-1547. doi: 10.1016/0043-1354(95)00327-4 [45] PAN Y, YE L, NI B, et al. Effect of ph on N2O reduction and accumulation during denitrification by methanol utilizing denitrifiers[J]. Water Research, 2012, 46: 4832-4840. doi: 10.1016/j.watres.2012.06.003 [46] JIANG G M, GUTIERREZ O, YUAN Z G. The strong biocidal effect of free nitrous acid on anaerobic sewer biofilms[J]. Water Research, 2011, 45(12): 3735-3743. doi: 10.1016/j.watres.2011.04.026