-
据国家统计局发布数据显示,2020年我国整体的餐厨垃圾产生总量达到12 775万t[1]。从化学成分来看,餐厨垃圾主要由淀粉、纤维素、脂类、粗蛋白质、有机酸、无机盐以及一些Ca、Mg、Fe、K等微量元素组成[2]。餐厨垃圾经过分离破碎、高温蒸煮、油提取和固液分离后,形成高油、高盐、高氮及高有机物的餐厨废水[3],是餐厨垃圾处理的难点。根据文献报道[4],餐厨废水化学需氧量(chemical oxygen demand,COD)、氨氮和总氮质量浓度可分别达到100 000、300和2 000 mg·L−1。这使餐厨废水成为水质富营养化的重要污染源头,如处置不当,会引发一系列环境卫生、食品安全和人体健康问题。目前,处理餐厨废水主要采用的处理方法为全混式厌氧消化(continuous stirred tank reactor, CSTR)+好氧生物处理,然而由于餐厨废水的复杂性,CSTR在其处理工程中遇到污泥上浮或流失、泥水分离困难、微生物流失严重、产甲烷能力受抑制等诸多问题,从而导致挥发性脂肪酸累积、处理负荷下降、处理效率降低等问题[5]。此外,厌氧出水在后续好氧生化处理过程中,由于碳氮比失调需要投加大量的碳源,厌氧出水带泥也给好氧生化带来巨大的压力。因此,探索新型高效的餐厨废水处理方法迫在眉睫。
近年来厌氧膜生物反应器(anaerobic membrane bioreactor, AnMBR)逐渐引起人们广泛关注。AnMBR是一种将厌氧生物处理单元和膜分离技术有机结合的新型废水处理工艺,既保留了厌氧技术的诸多优点,膜组件的引入又可以完全截留微生物,实现污泥停留时间(sludge retention time, SRT)和水力停留时间(hydraulic retention time, HRT)的有效分离,又利于厌氧菌的富集,提高系统的生物降解效率[6-7]。在我们以往的研究中发现AnMBR的出水具有低COD和低COD/N的特征,在不额外投加碳源情况下,传统的硝化反硝化工艺难以实现高效脱氮,而部分亚硝化/厌氧氨氧化是基于两种自养菌(氨氧化菌和厌氧氨氧化菌)的新型污水脱氮工艺,适于处理低COD、低COD/N的厌氧工艺出水[8],可节约至少60%的曝气量,且具有自养脱氮过程无需外加碳源、剩余污泥量少等优势。然而厌氧氨氧化菌生长缓慢、生存温度范围窄、难以富集等因素造成该过程对反应条件十分敏感,特别是高浓度有机物存在的情况下,会严重影响甚至抑制厌氧氨氧化菌的活性[9]。因此,在AnMBR处理餐厨废水的工艺中既要保证运行负荷,又要提高处理效率,降低出水COD,从而减少其对厌氧氨氧化菌的抑制。CHENG等[10]开展了中空纤维型厌氧膜生物反应器和全混合厌氧反应器处理配制的低油脂餐厨废水的小试研究,指出厌氧膜生物反应器在有机负荷为9.72 kg·(m3·d)−1时生物气产量和有机物的去除效率均处于较高的水平并且优于全混合厌氧反应器。曹琦等[11]研究了中温条件下外置式厌氧膜生物反应器处理模拟餐厨废水的效能,结果表明,有机负荷为15 kg·(m3·d)−1时,各物质去除效果、产气效果以及系统运行的稳定性均处于最佳状态:出水COD保持在1 000 mg·L−1以下,COD去除率达到90%以上,日平均产气量为177 L·d−1。由此可见,AnMBR工艺在处理餐厨废水方面具有较好的可行性,且其出水水质适用于部分亚硝化/厌氧氨氧化工艺。
然而,当前大多数学者仅针对AnMBR处理模拟餐厨废水的运行效果进行了实验室规模的小试研究,关于其在实际高浓度餐厨废水处理的研究和工程应用则较少。为此,本研究通过构建中试规模AnMBR,处理张家港市某餐厨垃圾处理厂餐厨废水,重点研究了缓慢阶段提负荷下AnMBR的厌氧消化性能、厌氧稳定性能、污泥性质以及膜性能的变化,分析了其内在的相互关系及可能原因,以期为工业化应用提供参考。
AnMBR对高浓度餐厨废水的处理效能
Performance of an anaerobic membrane bioreactor treating high concentration kitchen wastewater
-
摘要: 餐厨废水是一类高油、高盐、高氮等较为复杂的废水,在传统厌氧处理中面临污泥漂浮流失、有机负荷低及COD去除效果差等问题。通过构建中试规模厌氧膜生物反应器(anaerobic membrane reactor, AnMBR)处理餐厨废水,考察了3个运行阶段(污泥驯化阶段、容积负荷(volume loading rate, VLR)提升阶段和污泥停留时间(sludge retention time, SRT)缩短阶段)的厌氧消化性能、稳定性能、污泥性质和膜性能变化。结果表明,在污泥驯化阶段,低负荷(1.5 kg·(m3·d)−1)污泥驯化方式能够实现AnMBR的快速启动,甲烷产率由227 mL·g−1 (以COD计)迅速提升至267 mL·g−1,COD去除率达到99%。在VLR提升阶段,当负荷由3.0 kg·(m3·d)−1逐渐增加至12.0 kg·(m3·d)−1时,甲烷产率由283 mL·g−1升高并稳定至335 mL·g−1左右,COD去除率达到98.5%。然而此阶段污泥浓度由13.39 g·L−1迅速升高至45.59 g·L−1,从而导致膜污染加剧,平均膜通量下降速率由0.53 L·(m2·h·d)−1增至0.78 L·(m2·h·d)−1。在SRT缩短阶段(由100 d缩短至40 d),尽管排泥量由0.4 L·d−1增加至1 L·d−1,甲烷产率并没有受到明显影响,仍稳定在335 mL·g−1左右,COD去除率达到98.9%。此外,缩短SRT增大了排泥量,反应器内污泥浓度由45.59 g·L−1逐渐降低至45.27 g·L−1,缓解了膜污染,膜通量下降速率减缓到0.42 L·(m2·h·d)−1。在整个运行阶段,AnMBR对毒性物质氨氮具有良好的耐受能力,尽管体系内氨氮质量浓度高达2 600 mg·L−1,VFA/ALK始终低于0.04,表明AnMBR不仅对外界环境变化有着较好的缓冲能力,而且对消化体系的内源性抑制因素也有着良好的耐受能力。综上,AnMBR在处理餐厨废水时表现了良好的处理性能和稳定性能。Abstract: Kitchen wastewater is a kind of complex wastewater with high oil, high salt and high nitrogen. The traditional anaerobic reactors have been confronted with many problems such as sludge floating and loss, low organic load and poor COD removal efficiency during the process of treating kitchen wastewater. In this study, a pilot-scale anaerobic membrane reactor (AnMBR) was constructed to treat the kitchen wastewater, and its performance, stability, sludge properties and membrane flux were investigated at three stages: sludge cultivation, volume loading rate (VLR) increase and sludge retention time (SRT) decrease. The results showed that the domestication method of low VLR (1.5 kg·(m3·d)−1) could realize the rapid start-up of AnMBR, and the methane yield increased rapidly from 227mL·g−1(calculated by COD) to 267 mL·g−1 and the COD removal efficiency reached 99%. At the stage of VLR increasing from 3.0 kg·(m3·d)−1 to 12.0 kg·(m3·d)−1, the methane yield raised from 283 mL·g−1 to about 335 mL·g−1 and stabilize at it, the COD removal efficiency reached 98.5%. However, at this stage, the mixed liquor suspended solids (MLSS) increased rapidly from 13.39 g·L−1 to 45.59 g·L−1, which resulted in a membrane fouling aggravation with the average flux decline rate increasing from 0.53 L·(m2·h·d)−1 to 0.78 L·(m2·h·d)−1. At the stage of SRT decrease (from 100 days to 40 days), although the sludge discharge rate increased from 0.4 L·d−1 to 1 L·d−1, the methane yield was not significantly affected and still stabilized at about 335 mL·g−1, and the COD removal efficiency reached 98.9%. Furthermore, SRT decrease led to a gradual MLSS decrease in the reactor from 45.59 g·L−1 to 45.27 g·L−1, which alleviated the membrane fouling and led to the reduction of the average membrane flux decline rate to 0.42 L·(m2·h·d)−1. Besides, during the whole operation stage, AnMBR had a good tolerance to ammonia nitrogen, although the ammonia nitrogen mass concentration in the system was as high as 2 600 mg·L−1, VFA/ALK was always lower than 0.04. This indicated that AnMBR not only exhibited a good buffer ability to the changes of external environment, but also showed a good tolerance to the endogenous inhibitory factors of digestive system. In conclusion, AnMBR presented a good COD removal efficiency and digestion stability for treating kitchen wastewater.
-
表 1 不同阶段下AnMBR运行参数
Table 1. Parameters for AnMBR at different operation stages
阶段 时间/d 容积负荷/ (kg·(m3·d)−1) SRT/d Ⅰ 0~10 1.5 不排泥 Ⅱ 10~100 3.0~12.0 100 Ⅲ 100~120 12.0 40 -
[1] 中华人民共和国国家统计局. 中国统计年鉴[J]. 北京: 中国统计出版社, 2021. [2] 吴阳春. 餐厨垃圾废水中温厌氧消化试验研究[D]. 长沙: 湖南大学, 2011. [3] 姜萌萌, 林敏, 郑晓宇, 等. 高温厌氧膜生物反应器处理餐厨废水的启动[J]. 中国环境科学, 2020, 40(12): 5318-5324. [4] 闫林涛, 黄振兴, 肖小兰, 等. 厌氧膜生物反应器处理高浓度有机废水的中试研究[J]. 食品与生物技术学报, 2015, 34(12): 1248-1255. [5] APPELS L, BAEYENS J, DEGREVEA J, et al. Principles and potential of the anaerobic digestion of waste-activated sludge[J]. Progress in Energy and Combustion Science, 2008, 34(6): 755-781. doi: 10.1016/j.pecs.2008.06.002 [6] 于潘芬, 张文哲, 于晓, 等. 厌氧膜生物反应器在污泥厌氧消化中的应用[J]. 环境工程, 2018, 36(11): 35-39. [7] CHEN R, NIE Y L, HU Y S, et al. Fouling behaviour of soluble microbial products and extracellular polymeric substances in a submerged anaerobic membrane bioreactor treating low-strength wastewater at room temperature[J]. Journal of Membrane Science, 2017, 531: 1-9. doi: 10.1016/j.memsci.2017.02.046 [8] CAO Y, VAN LOOSDRECHT M C, DAIGGER G T. Mainstream partial nitritation-anammox in municipal wastewater treatment: status, bottlenecks, and further studies[J]. Applied Microbiology and Biotechnology, 2017, 101(4): 1365-1383. doi: 10.1007/s00253-016-8058-7 [9] 汪瑶琪, 喻徐良, 陈重军, 等. 有机物对厌氧氨氧化菌活性影响研究进展[J]. 化学通报, 2017, 80(2): 173-178. [10] CHENG H, HIRO Y, HOJO T, et al. Upgrading methane fermentation of food waste by using a hollow fiber type anaerobic membrane bioreactor[J]. Bioresource Technology, 2018, 267: 386-394. doi: 10.1016/j.biortech.2018.07.045 [11] 曹琦. 外置式厌氧膜生物反应器处理餐厨垃圾废水研究[D]. 上海: 华东师范大学, 2019. [12] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [13] 张存胜. 厌氧发酵技术处理餐厨垃圾产沼气的研究[D]. 北京: 北京化工大学, 2013. [14] 晏习鹏, 肖小兰, 亓金鹏, 等. 中试厌氧膜生物反应器对剩余污泥的消化效果[J]. 中国给水排水, 2020, 36(19): 1-8. [15] 野池达野. 甲烷发酵[M]. 北京: 化学工业出版社, 2014. [16] 戴金金, 牛承鑫, 潘阳, 等. 基于厌氧膜生物反应器的剩余污泥-餐厨垃圾厌氧共消化性能[J]. 环境科学, 2020, 41(8): 3740-3747. [17] 白玲. 浸没双轴旋转厌氧膜生物反应器的研究[D]. 南昌: 南昌大学, 2008. [18] ALIBARDI L, BERNAVA N, COSSU R, et al. Anaerobic dynamic membrane bioreactor for wastewater treatment at ambient temperature[J]. Chemical Engineering Journal, 2016, 284: 130-138. doi: 10.1016/j.cej.2015.08.111 [19] TANG C J, ZHENG P, ZHANG L, et al. Enrichment features of anammox consortia from methanogenic granules loaded with high organic and methanol contents[J]. Chemosphere, 2010, 79(6): 613-619. doi: 10.1016/j.chemosphere.2010.02.045 [20] 戴金金, 牛承鑫, 潘阳, 等. 基于厌氧膜生物反应器的剩余污泥-餐厨垃圾厌氧共消化性能[J]. 环境科学, 2020, 41(08): 3740-3747. [21] LIU X, WANG W, SHI Y C, et al. Pilot-scale anaerobic co-digestion of municipal biomass waste and waste activated sludge in China: effect of organic loading rate[J]. Waste Management, 2012, 32(11): 2056-2060. doi: 10.1016/j.wasman.2012.03.003 [22] JEISON D, VAN LIER J B. Cake layer formation in anaerobic submerged membrane bioreactors (AnSMBR) for wastewater treatment[J]. Journal of Membrane Science, 2006, 284(1): 227-236. [23] XU R, YANG Z H, CHEN T, et al. Anaerobic co-digestion of municipal wastewater sludge with food waste under different fat, oil, grease contents: Study on reactor performance and extracellular polymeric substances[J]. RSC Advances, 2015, 125: 103547-103556. [24] 亓金鹏, 肖小兰, 张瑞娜, 等. AnMBR处理高盐榨菜废水的运行效能及膜污染特性[J]. 环境工程学报, 2021, 15(2): 553-562. [25] 姚军强, 刘媛, 郑晓宇, 等. 浸没式厌氧膜生物反应器处理垃圾渗滤液的连续运行性能研究[J]. 环境工程, 2021-11-5. [26] PROCHAZKA J, DOLEJS P, MACA J, et al. Stability and inhibition of anaerobic processes caused by insufficiency or excess of ammonia nitrogen[J]. Applied Microbiology and Biotechnology, 2012, 93(1): 439-447. doi: 10.1007/s00253-011-3625-4 [27] LI Y, ZHANG Y, SUN Y M, et al. The performance efficiency of bioaugmentation to prevent anaerobic digestion failure from ammonia and propionate inhibition[J]. Bioresource Technology, 2017, 231: 94-100. doi: 10.1016/j.biortech.2017.01.068 [28] 李琦, 席北斗, 李东阳, 等. 腐殖酸含量对污泥厌氧发酵过程产CH4效率的影响[J]. 环境科学研究, 2019, 32(5): 875-880. [29] YE J X, MU Y J, CHENG X, et al. Treatment of fresh leachate with high-strength organics and calcium from municipal solid waste incineration plant using UASB reactor[J]. Bioresource Technology, 2011, 102(9): 5498-5503. doi: 10.1016/j.biortech.2011.01.001 [30] POLICE A, LAERA G, SATURNO D, et al. Effects of sludge retention time on the performance of a membrane bioreactor treating municipal sewage[J]. Journal of Membrane Science, 2008, 317(1): 65-70. [31] 杨磊. 膜生物反应器工艺污泥性质与膜渗透性能研究[D]. 邯郸: 河北工程大学, 2018. [32] 孟凡刚. 膜生物反应器膜污染行为的识别与表征[D]. 大连: 大连理工大学, 2007. [33] 姚军强, 刘媛, 吴志跃, 等. 厌氧膜生物反应器处理垃圾渗滤液在高负荷下的连续运行性能研究[J]. 新能源进展, 2022, 10(1): 27-33. [34] 谢元华, 朱彤, 徐成海, 等. 膜生物反应器中膜污染影响因素的研究进展[J]. 化学工程, 2010, 38(10): 26-32. [35] CHEN L, HU Q Z, ZHANG X, et al. Effects of salinity on the biological performance of anaerobic membrane bioreactor[J]. Journal of Environmental Management, 2019, 238: 263-273.