-
生活垃圾无害化处理方式主要包括卫生填埋、焚烧和堆肥等[1]。截至2020年,焚烧处理占62%成为我国生活垃圾的主要处理方式[1]。在生活垃圾焚烧过程中易生成具有致癌、致畸、致突变和伤害免疫系统等危害的二恶英 (PCDD/Fs) ,它包括多氯代二苯并呋喃 (PCDFs) 和多氯代二苯并二恶英 (PCDDs) [2-4]。目前,生活垃圾焚烧厂采用“3T+E”的焚烧方式配合烟道活性炭喷射+布袋等措施加以控制[5]。然而,因为缺少二恶英的在线监测设施,二恶英的控制仍存在较大的不确定性[6],难以达到实时控制要求。
近年来,研究者在生活垃圾焚烧设施二恶英防控和软测量方面开展了诸多研究。结果表明,在生活垃圾焚烧过程中,二恶英主要在烟气降温区间 (400~200 ℃) 生成 [7],二恶英的生成机理包括“高温气相生成”、“从头合成 (de novo) ”和“前驱物生成”3种,其中,“从头合成”和“前驱物生成”占主导地位[5,8-9]。在二恶英的排放与预测方面,有研究者发现,其排放量主要与生活垃圾成分、燃烧状态和烟道活性炭喷射等因素密切相关,并采用随机森林法、人工神经网络和支持向量机回归算法等构建了二恶英排放的预测模型[6,10-11] ,但仍然很难为实时调控二恶英的排放提供科学支持[11]。
针对如何通过实时调节运行参数实现二恶英减排的问题,本研究以华南某生活垃圾焚烧发电厂为研究对象,通过分析焚烧系统的各种运行状态下的炉内特征、二恶英和常规大气污染物的排放特征,阐明二恶英的生成机理及其调控方案,以期为优化焚烧过程和降低二恶英排放提供参考依据。
基于k-Means算法的生活垃圾焚烧设施烟气二恶英防控
Prevention and control of dioxins emission in domestic waste incineration facilities based on k-Means algorithm
-
摘要: 为深入探究生活垃圾焚烧设施二恶英的防控方法,采用k-Means算法对华南某生活垃圾焚烧发电厂焚烧设施的运行状态和不同炉内状态下二恶英排放特征及控制机理进行研究。结果表明,该厂3台焚烧炉具有显著不同的运行状态 (类别1和2) (p<0.05) ,在不同状态下,其常规污染物及二恶英排放特征差异显著 (p<0.05) ,类别1炉内状态较差,其排放的CO质量浓度是类别2状态下的2倍,二恶英的质量浓度是类别2状态下的1.5倍。类别1和类别2状态下二恶英的主导生成机理分别为“前驱物合成反应”和“从头合成反应”。为降低二恶英的排放,该厂首先应保证烟气流量大于10.5×104 m3·h−1 (均值11.8×104 m3·h−1) ,其余参数最优范围为:烟气含氧量大于7.0% (均值8.6%) 、CO质量浓度低于9.0 mg·m−3 (均值3.5 mg·m-3) 、烟气湿度小于23.7% (均值21.3%) 、烟气温度为140~154 ℃ (均值145.7 ℃) 。当通过运行控制手段无法保持上述参数控制范围时,应分析原因并考虑停炉检修。本研究结果可为优化焚烧过程、降低二恶英排放、生活垃圾焚烧发电厂长期稳定运行的判别和精细化管理提供参考。Abstract: In order to further explore the prevention and control of dioxins emission from domestic waste incineration facilities, pollution characteristics and control mechanisms of dioxins emitted from a domestic waste incineration power plant in South China under different operation status of incineration facilities and different furnace conditions were studied by k-Means algorithm. The results showed that three incinerators in the plant had significantly 2 different operation status (Status 1 and 2) (p<0.05), with distinct emissions of air pollutants including conventional pollutants and dioxins. The mass concentrations of CO and ∑PCDD/DFs were 2 times and 1.5 times higher, respectively, in Status 1 than Status 2. The dominant formation mechanisms of dioxins in status 1 and status 2 were the precursor synthesis reaction and the de novo synthesis reaction, respectively. To reduce the dioxins emission, the plant should firstly ensure that the smoke volume should be above 10.5×104 m3·h−1, and then guarantee that the other parameters of domestic waste incineration are in the following optimal range: flue gas oxygen content above 7%, carbon monoxide concentration below 9.0 mg·m−3, flue gas temperature between 140 ℃ and 154 ℃, and flue gas humidity below 23.7%. The incinerator should be shut down for maintenance when the limits of the optimal parameters are exceeded. The results could provide a scientific support for optimizing the incineration process and reducing dioxin emission, and also provide a theoretical basis for the identification and fine management of long-term stable operation of domestic waste incineration power plants.
-
Key words:
- domestic waste /
- incineration facilities /
- dioxins emission /
- k-Means algorithm
-
表 1 二恶英的质量浓度均值
Table 1. Average concentrations of dioxins
ng·m−3 序号 单体名称 类别1 类别2 均值 均值95%置信区间 标准偏差 均值 均值95%置信区间 标准偏差 1 2,3,7,8-TCDF 0.004 9 0.001 8~0.010 4 0.014 2 0.002 8 0.001 9~0.003 9 0.005 1 2 1,2,3,7,8-PeCDF 0.005 8 0.002 0~0.011 5 0.015 9 0.004 6 0.002 9~0.006 5 0.008 9 3 2,3,4,7,8-PeCDF 0.009 3 0.002 9~0.020 1 0.028 6 0.006 5 0.003 8~0.009 7 0.014 9 4 1,2,3,4,7,8-HxCDF 0.008 1 0.003 4~0.014 5 0.018 4 0.006 6 0.003 6~0.010 4 0.017 3 5 1,2,3,6,7,8-HxCDF 0.007 9 0.003 4~0.014 4 0.018 3 0.006 8 0.003 9~0.010 2 0.016 0 6 2,3,4,6,7,8-HxCDF 0.010 9 0.004 2~0.020 8 0.027 4 0.008 9 0.005 0~0.013 4 0.021 3 7 1,2,3,7,8,9-HxCDF 0.000 5 0.000 2~0.000 8 0.001 0 0.000 5 0.000 3~0.000 7 0.000 9 8 1,2,3,4,6,7,8-HpCDF 0.024 3 0.012 1~0.039 7 0.045 2 0.024 9 0.011 3~0.043 0 0.080 7 9 1,2,3,4,7,8,9-HpCDF 0.002 6 0.001 3~0.004 0 0.004 3 0.002 8 0.001 4~0.004 6 0.008 2 10 OCDF 0.007 4 0.004 7~0.010 5 0.009 6 0.008 0 0.004 2~0.012 7 0.021 3 11 2,3,7,8-TCDD 0.000 7 0.000 2~0.001 3 0.001 7 0.000 4 0.000 2~0.000 5 0.000 6 12 1,2,3,7,8-PeCDD 0.002 1 0.000 7~0.004 2 0.005 8 0.001 2 0.000 6~0.002 0 0.003 6 13 1,2,3,4,7,8-HxCDD 0.002 2 0.000 9~0.003 6 0.004 4 0.001 5 0.000 7~0.002 6 0.004 8 14 1,2,3,6,7,8-HxCDD 0.006 2 0.002 7~0.010 3 0.012 3 0.003 2 0.001 7~0.005 4 0.009 5 15 1,2,3,7,8,9-HxCDD 0.003 2 0.001 5~0.005 2 0.006 0 0.002 3 0.000 9~0.004 5 0.009 5 16 1,2,3,4,6,7,8-HpCDD 0.034 4 0.017 9~0.054 1 0.058 6 0.016 5 0.010 7~0.023 9 0.033 6 17 OCDD 0.052 0 0.026 5~0.086 0 0.098 7 0.024 8 0.016 6~0.034 5 0.045 1 19 ∑PCDD/DFs 0.182 5 0.086 5~0.311 5 - 0.122 3 0.069 6~0.188 5 - -
[1] 中华人民共和国住房和城乡建设部. 2020年城乡建设统计年鉴[EB/OL]. [2021-10-12]. https://www.mohurd.gov.cn/file/2021/20211012/2020年城乡建设统计年鉴.zip, 2020. [2] VOPHAM T, BERTRAND K A, FISHER J A, et al. Emissions of dioxins and dioxin-like compounds and incidence of hepatocellular carcinoma in the United States[J]. Environmental Research, 2022, 204: 112386. doi: 10.1016/j.envres.2021.112386 [3] AYLWARD L L, LAMB J C, LEWIS S C. Issues in risk assessment for developmental effects of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin and related compounds[J]. Toxicological Sciences, 2005, 87(1): 3-10. doi: 10.1093/toxsci/kfi236 [4] MCKAY G. Dioxin characterization formation and minimisation during municipal solid waste (MSW) incineration: review[J]. Chemical Engineering Journal, 2002, 86(3): 343-368. doi: 10.1016/S1385-8947(01)00228-5 [5] 罗国鹏, 张凯, 王进进, 等. 垃圾焚烧炉二恶英排放的控制策略及催化塔的记忆效应[J]. 环境工程学报, 2022, 16(7): 2241-2248. doi: 10.12030/j.cjee.202106028 [6] XIA H, TANG J, ALJERF L. Dioxin emission prediction based on improved deep forest regression for municipal solid waste incineration process[J]. Chemosphere, 2022, 294: 133716. doi: 10.1016/j.chemosphere.2022.133716 [7] MA Y, LIN X, CHEN Z, et al. Emission characteristics and formation pathways of polychlorinated dibenzo-p-dioxins and dibenzofurans from a typical pesticide plant[J]. Aerosol and Air Quality Research, 2019, 19(6): 1390-1399. doi: 10.4209/aaqr.2019.04.0224 [8] ZHAN M X, WANG T J, JIE Y, et al. The behaviors and relationships of PCDD/Fs and chlorobenzenes in the whole process of one municipal solid waste incinerator[J]. Aerosol and Air Quality Research, 2018, 18(12): 3134-3146. doi: 10.4209/aaqr.2018.03.0092 [9] CHEN Z L, LIN X Q, LU S Y, et al. Suppressing formation pathway of PCDD/Fs by S-N-containing compound in full-scale municipal solid waste incinerators[J]. Chemical Engineering Journal, 2019, 359: 1391-1399. doi: 10.1016/j.cej.2018.11.039 [10] 肖晓东, 卢佳伟, 海景, 等. 垃圾焚烧烟气中二恶英类浓度的支持向量回归预测[J]. 可再生能源, 2017, 35(8): 1107-1114. [11] BUNSAN S, CHEN W Y, CHEN H W, et al. Modeling the dioxin emission of a municipal solid waste incinerator using neural networks[J]. Chemosphere, 2013, 92(3): 258-264. doi: 10.1016/j.chemosphere.2013.01.083 [12] 查琳琳, 牛培峰, 常玲芳, 等. 基于优化型K-means聚类算法的锅炉热效率研究[J]. 控制工程, 2021, 28(1): 29-34. doi: 10.14107/j.cnki.kzgc.20180558 [13] 谢海立. 垃圾焚烧炉排炉的炉内过程动态特性数字仿真[D]. 南京: 东南大学, 2017. [14] 胡玉梅, 王传宾, 朱新才, 等. 垃圾焚烧炉二次配风优化数值模拟[J]. 环境工程学报, 2009, 3(5): 951-955. [15] TRIVEDI J, MAJUMDAR D. Memory effect driven emissions of persistent organic pollutants from industrial thermal processes, their implications and management: a review[J]. Journal of Environmental Management, 2013, 119: 111-120. doi: 10.1016/j.jenvman.2013.01.026 [16] WILLIAM M. 统计学(原书第6版)[J]. 北京:机械工业出版社, 2018: 276-280. [17] HU B H, HUANG Q X, CHI Y, et al. Polychlorinated dibenzo-p-dioxins and dibenzofurans in a three-stage municipal solid waste gasifier[J]. Journal of Cleaner Production, 2019, 218: 920-929. doi: 10.1016/j.jclepro.2019.01.336 [18] WANG M, LIU G R, JIANG X X, et al. Thermochemical formation of polybrominated dibenzo-p-dioxins and dibenzofurans mediated by secondary copper smelter fly ash, and implications for emission reduction[J]. Environmental Science and Technology, 2016, 50(14): 7470-7479. doi: 10.1021/acs.est.6b02119 [19] ZHONG J, ZHANG G, HAI J, et al. Polychlorinated dibenzo-p-dioxins and dibenzofurans from a grate-type municipal solid waste incinerator in China[J]. Advanced Materials Research, 2014, 878: 616-621. doi: 10.4028/www.scientific.net/AMR.878.616 [20] ZHONG R, CAI J J, YAN F, et al. Process tracing and partitioning behaviors of PCDD/Fs in the post-combustion zone from a full-scale municipal solid waste incinerator in southern China[J]. Environmental Technology and Innovation, 2021, 23: 101789. doi: 10.1016/j.eti.2021.101789 [21] 付建平, 青宪, 冯桂贤, 等. 基于污泥掺烧的某生活垃圾焚烧厂烟道气、飞灰及炉渣中的二恶英特征[J]. 环境科学学报, 2017, 37(12): 4677-4684. [22] Phan D N C, JANSSON S, MARKLUND S. Effects of regional differences in waste composition on the thermal formation of polychlorinated aromatics during incineration[J]. Chemosphere, 2013, 93(8): 1586-1592. doi: 10.1016/j.chemosphere.2013.08.012 [23] YAN M, LI X D, CHEN T, et al. Effect of temperature and oxygen on the formation of chlorobenzene as the indicator of PCDD/Fs[J]. 环境科学学报:英文版, 2010, 22(10): 1637-1642. [24] WANG T J, CHEN T, LIN B B, et al. Emission characteristics and relationships among PCDD/Fs, chlorobenzenes, chlorophenols and PAHs in the stack gas from two municipal solid waste incinerators in China[J]. RSC Advances, 2017, 7(70): 44309-44318. doi: 10.1039/C7RA04168C [25] 钱原吉, 吴占松. 生活垃圾焚烧炉中二恶英的生成和计算方法[J]. 动力工程, 2007, 27(4): 616-619. [26] CHI K H, CHANG M B, CHANG-CHIEN G P, et al. Characteristics of PCDD/F congener distributions in gas/particulate phases and emissions from two municipal solid waste incinerators in Taiwan[J]. Science of the Total Environment, 2005, 347(1/2/3): 148-162.