-
烟气中SO2气体污染物是形成酸雨的重要前驱体物质,NO的排放则会引发光化学烟雾,燃料不完全燃烧导致的COx浓度不断上升进而引发的温室效应等大气污染问题受到越来越多的关注[1-3]。目前,许多污染控制技术用于解决单独的污染物去除问题,而污染物一体化去除的吸附技术因节省大量成本和操作简便等优点而得以快速发展,而开发针对多气体污染同时去除的功能材料便尤为重要。
吸附技术由于其方便、高效及可同时去除污染物硫硝碳等优点,已成为一体化烟气净化技术首选。吸附技术即利用吸附剂 (如活性炭、沸石分子筛、活性氧化铝等) 吸附有害成分,达到消除污染的目的。吸附剂应具有丰富的孔结构、较大的比表面积、良好的化学性质和热稳定性等较好的吸附性能[4]。金属有机骨架材料(metal-organic framework, MOF),也称为配位聚合物,是一类由金属离子/簇作为次级构造单元,与有机配体自组装而成的网络结构多孔材料。相比于其他传统多孔材料(分子筛、活性炭、硅胶等),MOF具有更高的孔隙率、较大的比表面积、高度可调控的孔尺寸和暴露的活性位点等,因而在气体吸附领域显示出巨大的潜力[5-7]。在各种MOF材料中,M-MOF -74系列(M = Mg, Zn, Ni, Co, Mn, Fe) 表现为一维六方孔道的骨架材料,具有相同的晶体结构和不同的不饱和配位金属中心,其独特的无限次级结构基元使得材料的单一晶格对异金属有更强的包容性,为探索开放金属位在气体吸附中的作用提供了理想的多金属共混体系[8]。
目前,双金属MOF-74较单金属材料具有更优异的吸附性能。孔乾乾[9]制备的两种材料MgNi-MOF-74和CoNi-MOF-74相较于单金属Ni-MOF-74有明显更高的氢气吸附量,在77 K、100 kPa下最高的氢气吸附量 (质量分数) 为2.12%,比单金属材料的吸附量提升了25%。孙豪[10]采用热溶剂法制备的CoFe-MOF-74对二氧化碳的最高吸附量为65.51 mL·g−1,比单金属Co-MOF-74的吸附量提升了近28.1%。孔道内丰富的不饱和金属位点使得MOF-74在气体脱除方面有突出表现,然而现有研究中关于多组分共吸附的研究仍较少。另外,由于MOF-74对水分子和氧气的吸附能力同样较强,会导致与反应气体的竞争吸附而发生吸附效果下降的现象[11]。
基于此,本研究采用热溶剂法成功制备了双金属NiMg-MOF-74吸附剂,并研究其共吸附硫硝碳的性能,后通过氨水浸渍材料进一步提高其吸附容量及材料稳定性,并利用TPD结合傅里叶原位红外光谱技术探究NiMg-MOF-74共吸附硫硝碳机理,以期揭示氨改性后性能提高的机制。本研究可为一体化烟气净化材料的开发提供参考。
氨修饰NiMg-MOF-74材料共吸附硫硝碳效能及其机理
Co-adsorption efficiency and mechanism of ammonium modified NiMg-MOF-74 material
-
摘要: 为实现烟气中硫硝碳的共吸附,采用热溶剂法制备了以不同比例Ni2+和Mg2+为中心离子,2,5-二羟基对苯二甲酸为配体的双金属有机框架材料NixMg1−x-MOF-74,再通过氨水浸渍得到不同浓度氨改性的共吸附硫硝碳性能最优的Ni0.83Mg0.17-MOF-74,以实现氨基基团的功能化修饰,并利用原位红外光谱记录了吸附剂上3种气体的吸附物种状态及变化,结合TPD探究了其共吸附机理,最后考察了O2、H2O对上述材料吸附过程稳定性的影响。效率测试发现,改性后的0.2NH3@Ni0.83Mg0.17-MOF-74吸附剂对SO2、NO和CO共吸附的饱和吸附量为0.851、2.130和0.187 mmol·g−1,为改性前的1.8、6.3和4.7倍。结果表明,氨基的修饰使吸附剂拥有更多表面碱性基团,从而能吸附活化酸性气体,并提高材料对氧气和水蒸气的耐受性。本研究可为一体化烟气净化材料的开发及应用提供参考。Abstract: In order to realize the co-adsorption of sulfur, nitrate and carbon in flue gas, a series of bimetallic organic framework material Nix Mg1-x -MOF-74 with different proportions of Ni2+ and Mg2+ as central ions and 2,5-dihydroxyterephthalic acid as ligand were prepared by hot solvent method. On this basis, Ni0.83Mg0.17-aMOF-74 with the best co-adsorption performance of SO2、NO and CO was modified with different concentrations of ammonia to realize the functional modification of amino groups. The adsorption species and changes of three gases on the adsorbent were recorded by in-situ infrared spectroscopy, and the co-adsorption mechanism was explored by TPD. Finally, the effects of O2 and H2O on the stability of the adsorption process of the above materials were investigated. The results showed that the saturated adsorption capacity of modified 0.2NH3@Ni0.83Mg0.17-MOF-74 adsorbent for co-adsorption of SO2, NO and CO was 0.851, 2.130 and 0.187 mmol·g-1, which was 1.8, 6.3 and 4.7 times of that before modification. The results showed that the modification of amino groups made the adsorbent have more surface alkalinity to adsorb activated acid gases, and improved the resistance of materials to oxygen and water vapor.
-
表 1 不同类型的MOF-74材料的组成
Table 1. Composition of different types of MOF-74 materials
g 样品名称 Mg(NO3)2·6H2O Ni (NO3)2·6H2O DOBDC Ni0.36Mg0.64-MOF-74 0.51 0.19 0.167 Ni0.68Mg0.32-MOF-74 0.35 0.39 0.167 Ni0.83Mg0.17-MOF-74 0.17 0.59 0.167 表 2 NiMg-MOF-74材料的ICP-AES测试结果
Table 2. ICP-AES test results of Ni/Mg-MOF-74 material
样品名称 进料中镁镍摩尔比 最终样品中镁镍摩尔比 Ni0.36Mg0.64-MOF-74 0.75:0.25 0.64:0.36 Ni0.68Mg0.32-MOF-74 0.5:0.5 0.32:0.68 Ni0.83Mg0.17-MOF-74 0.25:0.75 0.17:0.83 表 3 双金属NiMg-MOF-74的孔结构参数
Table 3. Pore structure parameters of bimetallic NiMg-MOF-74
样品名称 BET 比表面积/(m2·g−1) 微孔比表面积/(m2·g−1) 总孔容/(cm3·g−1) 微孔孔容/(cm3·g−1) Ni0.36Mg0.64-MOF-74 734.7 545.071 0.421 0.284 Ni0.68Mg0.32-MOF-74 795.788 589.459 0.433 0.268 Ni0.83Mg0.17-MOF-74 1 006.579 872.313 0.511 0.388 表 4 NiMg-MOF-74及其氨改性材料的SO2-TPD/NO-TPD中SO2/NO脱附量
Table 4. Desorption of SO2/NO in SO2-TPD/NO-TPD of NiMg-MOF-74 and its ammonia modified materials
样品名称 SO2-TPD中SO2
脱附量NO-TPD中NO
脱附量Ni0.36Mg0.64-MOF-74 12 482 85 Ni0.68Mg0.32-MOF-74 7 531 420 Ni0.83Mg0.17-MOF-74 28 660 847 0.2-NH3@Ni0.83Mg0.17-MOF-74 15 553 255 0.6-NH3@Ni0.83Mg0.17-MOF-74 22 434 362 1-NH3@Ni0.83Mg0.17-MOF-74 9 049 490 -
[1] AL-NADDAF Q, LAWSON S, ROWNAGHI A A, et al. Analysis of dynamic CO2 capture over 13X zeolite monoliths in the presence of SOx, NOx and humidity[J]. AIChE Journal, 2020, 66(9): e16297. [2] HE H, WANG Y, FU W, et al. Study on the CO-SCR anti-sulfur and denitration performance of V-doped OMS-2 catalysts[J]. Ceramics International, 2021, 47(23): 33120-33126. doi: 10.1016/j.ceramint.2021.08.213 [3] JIANG H, WANG Q, WANG H, et al. Temperature effect on the morphology and catalytic performance of Co-MOF-74 in low-temperature NH3-SCR process[J]. Catalysis Communications, 2016, 80: 24-27. doi: 10.1016/j.catcom.2016.03.013 [4] ADHIKARI A K, LIN K-S. Improving CO2 adsorption capacities and CO2/N2 separation efficiencies of MOF-74(Ni, Co) by doping palladium-containing activated carbon[J]. Chemical Engineering Journal, 2016, 284: 1348-1360. doi: 10.1016/j.cej.2015.09.086 [5] SUN H, REN D, KONG R, et al. Tuning 1-hexene/n-hexane adsorption on MOF-74 via constructing Co-Mg bimetallic frameworks[J]. Microporous and Mesoporous Materials, 2019, 284: 151-160. doi: 10.1016/j.micromeso.2019.04.031 [6] XU G, ZUO Y, HUANG B. Metal-organic framework-74-Ni/carbon nanotube composite as sulfur host for high performance lithium-sulfur batteries[J]. Journal of Electroanalytical Chemistry, 2018, 830-831: 43-49. doi: 10.1016/j.jelechem.2018.10.028 [7] CAMPBELL J, TOKAY B. Controlling the size and shape of Mg-MOF-74 crystals to optimise film synthesis on alumina substrates[J]. Microporous and Mesoporous Materials, 2017, 251: 190-199. doi: 10.1016/j.micromeso.2017.05.058 [8] 李志华, 刘鸿, 宋凌勇, 等. 双金属功能化的MOF-74合成及气体吸附性能[J]. 无机化学学报, 2017, 33(2): 237-242. doi: 10.11862/CJIC.2017.042 [9] 孔乾乾. Ni-MOF-74的制备、改性及其氢气吸附性能研究 [D]. 大连: 大连理工大学, 2020. [10] 孙豪. 金属有机骨架材料MOF-74的制备及其苯与CO2吸附性能研究 [D]. 桂林: 广西师范大学, 2020. [11] 林俭锋, 苏叶, 肖静, 等. Mg-MOF-74的氨改性及其吸附CO2和水蒸气性能[J]. 功能材料, 2014, 45(9): 9038-9042. doi: 10.3969/j.issn.1001-9731.2014.09.008 [12] GUO S, QI X, ZHOU H, et al. A bimetallic-MOF catalyst for efficient CO2 photoreduction from simulated flue gas to value-added formate[J]. Journal of Materials Chemistry A, 2020, 8(23): 11712-11718. doi: 10.1039/D0TA00205D [13] 安晓银. NH2-MIL-125与M-MOF-74材料的制备、改性及吸附性能研究 [D]. 大连: 大连理工大学, 2019. [14] 李生璐. Mg-MOF-74的合成、改性及其CO2/H2O吸附性能研究 [D]. 沈阳: 东北大学, 2015. [15] 陈健. 金属—有机骨架MOF-74系列吸附捕集低浓度二氧化碳的研究 [D]. 大连: 大连理工大学, 2016. [16] 孙增智, 薛程, 宋莉芳, 等. 金属有机骨架化合物的二氧化碳吸附性能的研究进展[J]. 材料导报, 2019, 33(3): 541-549. doi: 10.11896/cldb.201903022 [17] 马孜豪, 竺柏康, 欧浩. 氮化硼纳米片改性Mg-MOF-74的制备及其水稳定性研究[J]. 浙江海洋大学学报(自然科学版), 2019, 38(4): 346-351. [18] ZURRER T, WONG K, HORLYCK J, et al. Mixed-metal MOF-74 templated catalysts for efficient carbon dioxide capture and methanation[J]. Advanced Functional Materials, 2020, 31(9): 2007624. [19] LI T, JIN Z. Unique ternary Ni-MOF-74/Ni2P/MoSx composite for efficient photocatalytic hydrogen production: Role of Ni2P for accelerating separation of photogenerated carriers[J]. Journal of Colloid and Interface Science, 2022, 605: 385-397. doi: 10.1016/j.jcis.2021.07.098 [20] TAN K, ZULUAGA S, GONG Q, et al. Water reaction mechanism in metal organic frameworks with coordinatively unsaturated metal ions: MOF-74[J]. Chemistry of Materials, 2014, 26(23): 6886-6895. doi: 10.1021/cm5038183 [21] 任丹妮. MOF-74的合成、改性及其吸附分离烯烃/烷烃性能研究 [D]. 上海: 华东理工大学, 2019. [22] LUO L, GUO Y, ZHU T, et al. Adsorption species distribution and multicomponent adsorption mechanism of SO2, NO, and CO2 on commercial adsorbents[J]. Energy & Fuels, 2017, 31(10): 11026-11033. [23] WU J, JIN S, WEI X, et al. Enhanced sulfur resistance of H3PW12O40-modified Fe2O3 catalyst for NH3-SCR: Synergistic effect of surface acidity and oxidation ability[J]. Chemical Engineering Journal, 2021, 412: 128712. doi: 10.1016/j.cej.2021.128712 [24] KANG R, HE J, BIN F, et al. Alkali metal-resistant mechanism for selective catalytic reduction of nitric oxide over V2O5/HWO catalysts[J]. Fuel, 2021, 304: 121445. doi: 10.1016/j.fuel.2021.121445 [25] TAN K, ZULUAGA S, WANG H, et al. Interaction of acid gases SO2 and NO2 with coordinatively unsaturated metal organic frameworks: M-MOF-74 (M = Zn, Mg, Ni, Co)[J]. Chemistry of Materials, 2017, 29(10): 4227-4235. doi: 10.1021/acs.chemmater.7b00005 [26] LIU W, GAO Z, SUN M, et al. One-pot synthesis of CrαMnβCeTiOx mixed oxides as NH3-SCR catalysts with enhanced low-temperature catalytic activity and sulfur resistance[J]. Chemical Engineering Science, 2022, 251: 117450. doi: 10.1016/j.ces.2022.117450 [27] ZHANG Y, ZHAO L, KANG M, et al. Insights into high CO-SCR performance of CuCoAlO catalysts derived from LDH/MOFs composites and study of H2O/SO2 and alkali metal resistance[J]. Chemical Engineering Journal, 2021, 426: 131873. doi: 10.1016/j.cej.2021.131873 [28] CHEN L, LI J, GE M. DRIFT Study on Cerium-Tungsten/Titiania catalyst for selective catalytic reduction of NOx with NH3[J]. Environmental Science& Technology, 2010, 44: 9590-9596. [29] LIAN Z, LIU F, SHAN W, et al. Improvement of Nb doping on SO2 Resistance of VOx/CeO2 catalyst for the selective catalytic reduction of NOx with NH3[J]. The Journal of Physical Chemistry C, 2017, 121(14): 7803-7809. doi: 10.1021/acs.jpcc.6b12772 [30] 李正杰. 金属—有机骨架材料气相分离性能的分子模拟研究 [D]. 北京: 北京化工大学, 2016. [31] 杨家佳, 丁玉栋, 廖强, 等. 合成前氨基改性Mg-MOF-74吸附分离CO2性能研究[J]. 工程热物理学报, 2019, 40(2): 435-441.