-
近年来,氨选择性催化还原法 (NH3-SCR) 是对低温烟道气中氮氧化物 (NOx) 的有效控制办法。该方法的关键是开发低温高稳定性脱硝催化剂。这类催化剂有低温Mn基催化剂[1]、中温的V-Mo(W)-O/TiO2[2]、中温Cu基催化剂[3]和Ce基催化剂等[4]。Mn基催化剂低温活性好,但抗硫稳定性差。LIU等[5]通过Eu改性Mn/TiO2催化剂,提高了表面Mn4+含量,并有效地降低了TiO2的结晶度,使催化剂抗硫性较Mn/TiO2有很大提升,能有效抗硫的同时NO转化率从20%提升到80%。ZHANG等[6]通过Sb改性了Mn/PG (凹凸棒石催化剂) ,提高了活性组分的分散度,且SbOx会优先与SO2反应,保护了活性组分,减少了MnSO4的生成,使催化剂抗硫抗水脱硝活性得到显著提升,但脱硝效率呈下降趋势。本课题组在提高Mn基催化剂的抗硫性方面开展了大量研究[7-10],制得了低温活性和抗硫性较好的Mn基催化剂。对抗硫后的催化剂进行表征发现,催化剂表面仍有一定量的硫存在,且载体晶型也会发生细微改变。改性后的Mn基催化剂抗硫性虽得到一定提升,但其工业应用中的稳定性仍有待验证。降低Cu基催化剂和Ce基催化剂的活性温度也是研究热点。但Cu基催化剂[11-12]和Ce基催化剂[13-14]的活性温度通常都在250 ℃以上,故不能满足低温脱硝要求。
V-Mo(W)-O/TiO2为传统商用催化剂,在温度高于300 ℃时具有较高的活性和抗硫性。但低于该温度时,则存在脱硝效率低、易发生硫中毒等现象。为提高钒基催化剂的低温活性和抗硫性,从载体改性、助剂添加、优化制备方法等方面对钒基催化剂进行了改性处理。通过调节载体表面酸性和孔结构、调节催化剂的活性组分价态、晶型、活性组分分散度和添加其他低温活性组分等办法可提高其低温活性和抗硫性[15-16]。MARBERGER等 [17]通过酸性SiO2对载体表面进行修饰以增加V2O5-WO3/TiO2表面酸性,阻止了TiO2载体的烧结,从而使催化剂的活性和稳定性明显提升。LI等[18]通过Nb掺杂增加了CeVO催化剂的氧空位和表面酸性,增加了Ce3+和V5+的表面物种含量,使催化剂在210~420 ℃时的NOx维持在90%以上,并且拥有很好的抗硫性。CHEN等[19]通过采用N2和H2非热等离子体处理法制备了V-Ce-Ni/TiO2催化剂,提高了活性组分的分散度,增加了催化剂表面酸性,从而提升了催化剂的低温活性,使得催化剂在230 ℃~350 ℃的NO转化率接近100%。这表明通过改性钒基催化剂可降低其活性温度,且提升其抗硫性。然而,在220 ℃以下,低温钒基催化剂的SCR活性仍然很差。因此,在脱硝过程中,降低催化剂活性温度,且拥有较好抗硫稳定性,仍是低温脱硝催化剂研究热点。
基于V-Mo(W)-O/TiO2较好的抗硫稳定性[20-21]和本课题组前期制备的Ge改性低温钒基催化剂[22],采用Ge稳定TiO2晶型,增加其表面的酸性位,调变TiO2与V、Mo之间的电子作用,使催化剂表现出低温高活性和高抗硫稳定性,但仍不能满足低温烟道气脱硝要求。本研究通过进一步掺杂Mn改善催化剂低温活性,优化载体对V-Mo活性组分的电子效应,制备出具有低温高脱硝活性和高稳定性的V-Mo-O/(Ge-Mn-TiO2)催化剂,并其进行活性和结构性能表征,从而探究其低温高活性和高稳定性的机理,以期为低温烟气中氮氧化物的控制技术提供参考。
Ge-Mn共掺杂对V-Mo-O/TiO2催化剂低温脱硝活性的影响
Effect of Ge-Mn co-doping on low-temperature denitrification activity of V-Mo-O/TiO2 catalyst
-
摘要: 采用共沉淀法制备Ge-Mn共改性TiO2载体,考察了V-Mo-O/Ge-xMn-TiO2催化剂的低温氨选择性催化还原 (NH3-SCR) 活性和抗硫稳定性。Ge-Mn的加入可显著提高催化剂在低温窗口下的脱硝活性,且具有较高的N2选择性和抗硫稳定性。当Ge:Mn:Ti的原子摩尔比为0.004:0.04:1,在140 ℃时脱硝活性为92%。催化剂的N2吸附-脱附、NH3-TPD、H2-TPR、XRD和XPS分析结果表明:Mn加入使催化剂的介孔增加,表面总酸性位和中高强度酸性位量显著增加,从而增加了催化剂对NH3的吸附活化和对SO2吸附的抑制;Mn与V、Mo、Ge活性组分发生了强电子相互作用,使V5+含量增加,且使低温活性组分的氧化还原循环易于进行,进而增加了催化剂的低温脱硝活性。这说明增加的表面总酸性位和中高强度酸性位量、增加的V5+和由此形成的低温条件促进了活性组分氧化还原循环,最终提高了催化剂的低温活性和高抗硫稳定性。本研究可为低温脱硝催化剂的研发及应用提供参考。Abstract: Ge-Mn co-modified TiO2 support was prepared by co-precipitation method, and the activity and sulfur resistance of low-temperature ammonia selective catalytic reduction (NH3-SCR) and sulfur resistance of V-Mo-O/Ge-xMn-TiO2 catalysts were investigated. Compared with traditional V-Mo-O/TiO2 catalysts, the addition of Ge-Mn significantly improved the denitrification activity of the catalyst at low temperature window, and at the same time had high N2 selectivity and stable sulfur resistance. When the Ge:Mn:Ti atomic molar ratio was 0.004:0.04:1, the denitrification activity could reach 92% at 140 °C. The N2 adsorption-desorption, NH3-TPD, H2-TPR, XRD and XPS analysis results of the catalyst showed that the addition of Mn increased the mesoporosity of the catalyst, meanwhile the total surface acid sites and the amount of medium and high strength acid sites increased significantly, which increased the catalyst's adsorption activation of NH3 and inhibition of SO2 adsorption. Mn interacted with the active components of V, Mo, and Ge, which increased the content of V5+ and facilitated the redox cycle of the active components at low temperature, thus the low-temperature denitration activity of the catalyst was increased. Therefore, the increase of total surface acid sites, medium-strength acid sites, high-strength acid sites, and V5+ content and the formation of a low-temperature facile redox cycle of active components improved the catalyst's low-temperature activity and high sulfur resistance stability.
-
Key words:
- Co-modification /
- low temperature /
- SCR /
- carrier /
- catalyst
-
表 1 催化剂表面O1s分峰拟合结果
Table 1. Fitting results of O1s peaks on catalyst surface
样品名称 Oα Oβ Oα/Oα+Oβ V-Mo-O/0.004Ge-TiO2 294,912 84,937 22.36% V-Mo-O/Ge-0.04Mn-TiO2 231,062 64,141 27.95% -
[1] ZHU H T, SONG L Y, LI K, et al. Low-temperature SCR catalyst development and industrial applications in China[J]. Catalysts, 2022, 12(3): 341. doi: 10.3390/catal12030341 [2] ISABELLA NOVA, ENRICO TRONCONI, Kinetic study of the NO/NO2-NH3 SCR reactions over a V2O5–WO3/TiO2 commercial catalyst for the after treatment of Diesel engines exhausts[J]. Journal of Environmental Chemical Engineering, 2009, 42(26): 183-190. [3] ZHANG S T, PANG L, CHEN Z, et al. Cu/SSZ-13 and Cu/SAPO-34 catalysts for deNOx in diesel exhaust: Current status, challebges, and future perspectives[J]. Applied Catalysts A:General, 2020, 607: 117855. doi: 10.1016/j.apcata.2020.117855 [4] LIU W J, LONG Y F, LIU S N, et al. Promotional effect of Ce in NH3-SCO and NH3-SCR reactions over Cu-Ce/SCR catalysts[J]. Journal of Industrial and Engineering Chemistry, 2022, 107: 197-206. doi: 10.1016/j.jiec.2021.11.045 [5] LIU J, GUO R T, LI M Y, et al. Enhancement of the SO2 resistance of Mn/TiO2 SCR catalyst by Eu modification: A mechanism study[J]. Fuel, 2018, 223: 385-393. doi: 10.1016/j.fuel.2018.03.062 [6] ZHANG X L, LV S S, ZHANG X C, et al. Improvement of the activity and SO2 tolerance of Sb-modified Mn/PG catalysts for NH3-SCR at a low temperature[J]. Journal of Environmental Sciences, 2021, 101: 1-15. doi: 10.1016/j.jes.2020.07.027 [7] 魏永林, 陈红萍, 侯欣辛等, Fe-Mn/TiO2低温NH3-SCR脱硝催化剂的SO2中毒机理[J]. 功能材料, 2021, 52(4): 4132-4139. [8] 魏永林, 陈红萍, 侯欣辛, 等, 低温脱硝催化剂抗硫性能研究[J]. 河北冶金, 2021(2): 1-6. [9] 杨旭, 陈红萍, 齐雪. 脱硝催化剂的硫中毒机理研究[J]. 现代化工, 2018, 38(2): 20-24. [10] HOU X X, CHEN H P, LIANG Y H, et al. La modified Fe–Mn/TiO2 catalysts to improve SO2 resistance for NH3-SCR at low-temperature[J]. Catalysis Surveys from Asia, 2020, 24: 291-299. doi: 10.1007/s10563-020-09309-1 [11] CHEN C M, GAO Y, LIU S T et al. Review on the latest developments in modified vanadium-titanium-based SCR catalysts[J]. Chinese Journal of Catalysis, 2018, 39(8): 1347-1365. doi: 10.1016/S1872-2067(18)63090-6 [12] LIU T K, WEI L Q, YAO Y Y, et al. La promoted CuO-MnOx catalysts for optimizing SCR performance of NO with CO[J]. Applied Surface Science, 2021, 546: 148971. doi: 10.1016/j.apsusc.2021.148971 [13] WANG Y, LI G G, ZHANG S Q, et al. Promoting effect of Ce and Mn addition on Cu-SSZ-39 zeolites for NH3-SCR reaction: Activity, hydrothermal stability, and mechanism study[J]. Chemical Engineering Journal, 2020, 393: 124782. doi: 10.1016/j.cej.2020.124782 [14] ZHANG K, WANG J J, GUAN P F, et al. Low-temperature NH3-SCR catalytic characteristic of Ce-Fe solid solutions based on rare earth concentrate[J]. Materials Research Bulletin, 2020, 128: 110871. [15] WU Z B, JIN R B, LIU Y, et al. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature[J]. Catalysis Communications, 2008, 9(13): 2217-2220. doi: 10.1016/j.catcom.2008.05.001 [16] NIU Y Q, SHANG T, HUI S E, et al. Synergistic removal of NO and N2O in low-temperature SCR process with MnOx/Ti based catalyst doped with Ce and V[J]. Fuel, 2016, 185: 316-322. doi: 10.1016/j.fuel.2016.07.122 [17] MARBERGER A, FERRI D, RENTSCH D, et al. Effect of SiO2 on co-impregnated V2O5/WO3/TiO2 catalysts for the selective catalytic reduction of NO with NH3[J]. Catalysis Today, 2019, 320: 123-132. doi: 10.1016/j.cattod.2017.11.037 [18] LI Y, ZHANG Z, ZHAO X, et al. Effects of Nb-modified CeVO4 to form surface Ce-O-Nb bonds on improving low-temperature NH3-SCR deNO activity and resistance to SO2 & H2O[J]. Fuel, 2023, 331: 125799. doi: 10.1016/j.fuel.2022.125799 [19] CHEN G, XU J, YU H, et al. Effect of the non-thermal plasma treatment on the structure and SCR activity of vanadium-based catalysts[J]. Chemical Engineering Journal, 2020, 380: 122286. doi: 10.1016/j.cej.2019.122286 [20] SALAZAR M, CRUZ A, CADENA A A, et al. Effect of the electronic state of Ti on M-doped TiO2 nanoparticles (M=Zn, Ga or Ge) with high photocatalytic activities: A experimental and DFT molecular study[J]. Material Science in Semiconductor Processing, 2017, 58: 8-14. doi: 10.1016/j.mssp.2016.10.050 [21] ZHANG W G, LV D. Preparation and characterization of Ge/TiO2 one-dimensional photonic crystal with low infrared-emissivity in the 8~14 μm band[J]. Materials Research Bulletin, 2020, 124: 110747. doi: 10.1016/j.materresbull.2019.110747 [22] 李泽清. 低温抗硫抗碱钒基脱硝催化剂的研究[D]. 唐山: 华北理工大学, 2022. [23] 侯欣辛. 助剂对Fe-Mn催化剂低温抗硫脱硝活性的影响[D]. 唐山: 华北理工大学, 2020. [24] MUHAMMAD S A, NASRUDIN A R, PANDEY A K, et al. Improved electron transfer of TiO2 based dye sensitized solar cells using Ge as sintering aid[J]. Optik, 2018, 157: 134-140. doi: 10.1016/j.ijleo.2017.11.073 [25] FRANCOIS G, CHRISTOPHE G, NOLVEN G, et al. Individual amounts of Lewis and Brønsted acid sites on metal oxides from NH3 adsorption equilibrium: Case of TiO2 based solids[J]. Catalysis Today, 2020, 168: 259-268. [26] INHAK S, HWANGHO L, SE W J, et al. Understanding the dynamic behavior of acid sites on TiO2-supported vanadia catalysts via operando DRIFTS under SCR-relevant conditions[J]. Journal of Catalysis, 2020, 382: 269-279. doi: 10.1016/j.jcat.2019.12.041 [27] GAO Y, WU X D, RAN R, et al. Effects of MoOx on dispersion of vanadia and low-temperature NH3-SCR activity of titania supported catalysts: Liquid acidity and steric hindrance[J]. Applied Surface Science, 2022, 585: 152710-152719. doi: 10.1016/j.apsusc.2022.152710 [28] ZHANG D J, MA Z R, WANG B D, et al. Effect of manganese and/or ceria loading on V2O5-MoO3/TiO2 NH3 selective catalytic reduction catalyst[J]. Applied Surface Science, 2013, 379(23): 305-312. [29] CHEN L, LI J H, GE M F, et al. The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3[J]. Chemical Engineering Journal, 2011, 170(26): 531-539. [30] MUHAMMAD S M, PULLUR A K, HEON P H. Novel sulfation effect on low-temperature activity enhancement of CeO2-added Sb-V2O5/TiO2 catalyst for NH3-SCR[J]. Applied Catalysis B:Environmental, 2014, 152(26): 28-37. [31] MITRAN G, NEATU F, PAVEL O D, et al. Behavior of molybdenum-vanadium mixed oxides in selective oxidation and disproportionation of toluene[J]. Materials, 2019, 12(5): 748-756. doi: 10.3390/ma12050748 [32] GONG P J, XIE J L, CHENG X K, et al. Elucidate the promotional effects of Sn on Ce-Ti catalysts for NH3-SCR activity[J]. Journal of the Energy Institute, 2020, 93(3): 1053-1063. doi: 10.1016/j.joei.2019.09.006 [33] LIU X S, SUI Z M, CEHN H F, et al. Structures and catalytic performances of Me/SAPO-34 (Me=Mn, Ni, Co) catalysts for low-tem perature SCR of NOx by ammonia[J]. Journal of Environmental Sciences, 2021, 104: 137-149. doi: 10.1016/j.jes.2020.11.018 [34] LI C, SRIRIM V, LIU Z Y, et al. Sequentially prepared Mo-V-Based SCR catalyst for simultaneous HgO oxidation and NO reduction[J]. Applied Catalysis A:General, 2021, 614: 12. [35] DONG W K, KWANG H P, HEON P H, et al. The role of molybdenum on the enhanced performance and SO2 resistance of V/Mo-Ti catalysts for NH3-SCR[J]. Applied Surface Science, 2019, 481: 1167-1177. doi: 10.1016/j.apsusc.2019.03.118 [36] HU W S, ZHANG S, QI X, et al. Mechanistic investigation of NH3 oxidation over V-0.5Ce(SO4)2/Ti NH3-SCR catalyst[J]. Catalysis Communications, 2018, 112: 1-4. doi: 10.1016/j.catcom.2018.04.010