-
随着工业技术的进步,工业废水污染问题日益严重。化工、电镀、印染等行业产生的工业废水中常含有较高浓度重金属离子,对人类健康和环境造成危害。如人体铜离子摄入过量,会导致肝脏器官受到损伤[1]。过量汞离子的摄入,会影响人体的中枢神经系统[2]等。因此,采用适宜的技术去除废水中的重金属离子,控制水体中有害重金属离子的含量,已经成为现阶段我国处理工业废水最严峻的挑战之一。
聚丙烯腈(PAN)膜具有成本低,易制取、化学性质稳定等优点,作为吸附剂在重金属废水处理领域应用广泛。为提高PAN膜对重金属离子的吸附性能,研究人员采用多种材料对其进行修饰改性,如壳聚糖、金属硫化物、磁性材料等[3-4]。其中金属硫化物中MoS2纳米材料具有三层原子层堆叠形成的类石墨结构,有比表面积大、表面带电性等特点,在PAN膜进行改性修饰中得到研究人员的认可。但采用MoS2改性后的PAN吸附膜对重金属离子的吸附容量达到100 mg·g−1以上却鲜有报道[4,5],膜的吸附容量仍有待提高。GO是一种比表面积大,含氧官能团(羧基、羟基、羰基、环氧基等)丰富的材料,在材料改性领域得到广泛的应用[6-7]。较大的比表面积,有利于容纳更多的重金属离子,其丰富的含氧官能团,经水解反应呈现出负电性,可提供大量吸附活性位点,通过静电作用、螯合作用、π-π共轭作用对重金属离子进行吸附,可极大提高膜对重金属离子的吸附性能[8-9]。本研究采用相转化法制备出以GO为改性材料的MoS2-PAN吸附膜,并对膜的相关性能及吸附过程进行了研究分析。
氧化石墨烯修饰MoS2-PAN吸附膜对铜离子吸附性能的影响
Adsorption performance of GO-MoS2-PAN membrane toward copper ions
-
摘要: 通过氧化石墨烯(GO)对硫化钼(MoS2)-聚丙烯腈(PAN)进行改性处理,采用相转化法成功制备了对水溶液中Cu2+进行吸附的GO-MoS2-PAN改性吸附膜。通过扫描电镜(SEM)、傅里叶变换红外光谱(FTIR)及接触角测试对该吸附剂材料进行了表征。探究了不同GO固含量对GO-MoS2-PAN改性吸附膜的孔隙率、纯水通量以及接触角的影响。在pH为5、Cu2+质量浓度为100 mg·L-1的溶液中,GO固含量为0.03%的改性吸附膜对Cu2+的最大平衡吸附量达到224.28 mg·g-1,且其脱附率为84%。结果表明,改性吸附膜对溶液中Cu2+的吸附动力学符合准二级动力学模型,等温吸附过程符合Freundlich等温吸附模型,热力学分析结果表明该吸附过程为自发吸热过程。Abstract: Molybdenum sulfide (MoS2)-polyacrylonitrile (PAN) was modified by GO, and GO-MoS2-PAN modified adsorbent membrane was prepared by phase inversion method for Cu2+ adsorption from aqueous solution. The adsorbents were characterized by scanning electron microscopy (SEM), Fourier transformed infrared spectroscopy (FTIR) and contact angle test. The effects of different GO solid content on the porosity, pure water flux and contact angle of GO-MoS2-PAN modified adsorbent membrane were investigated. When the pH of solution was 5 and the mass concentration of Cu2+ was 100 mg·L−1, the maximum equilibrium adsorption capacity of the modified adsorption membrane with 0.03% solid content of GO toward Cu2+ was 224.28 mg·g−1, and its desorption rate was 84%. The adsorption kinetic data fitted well to the pseudo-second-order model, and the isothermal adsorption data fitted well to Frenudlich isotherm model. The thermodynamic analysis indicated that the adsorption process was spontaneous and endothermic.
-
Key words:
- GO /
- modified adsorbent membrane /
- copper ions
-
表 1 吸附等温参数
Table 1. Adsorption isothermal parameters
T/K Langmuir Freundlich KL/(mg·L−1) qm/(mg·g−1) R2 KF n R2 293 2.15×10−3 1 362.76 0.835 6 8.202 1.36 0.980 5 303 1.69×10−3 1 766.44 0.759 1 6.475 1.25 0.979 4 308 1.88×10−3 1 719.40 0.795 5 7.844 1.29 0.986 9 表 2 相关热力学参数
Table 2. Relevant thermodynamic parameters
T/K ΔH/(kJ·mol−1) ΔS/(J·(mol·K)−1) ΔG/(kJ·mol−1) 288 − − −1.30 293 − − −1.54 298 12.19 46.86 −1.71 303 − − −1.98 308 − − −2.26 -
[1] YANG K, WANG G, CHEN X M, et al. Treatment of wastewater containing Cu2+, using a novel macromolecular heavy metal chelating flocculant xanthated chitosan[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 558: 384-391. doi: 10.1016/j.colsurfa.2018.06.082 [2] FANG L, LI L, QU Z, et al. A novel method for the sequential removal and separation of multiple heavy metals from wastewater[J]. Journal of Hazardous Materials, 2017, 342: 617-624. [3] LI H, ZHOU F X. Efficient Adsorption of heavy metal ions by A novel AO-PAN-g-chitosan/Fe3O4 composite[J]. ChemistrySelect, 2020, 5: 8033-8039. doi: 10.1002/slct.202001965 [4] QIU J L, LIU F Q. Recyclable nanocomposite of flowerlike MoS2@hybrid acid-doped PANI immobilized on porous PAN nanofibers for the efficient removal of Cr(VI)[J]. ACS Sustainable Chemistry Engineering, 2018, 6: 447-456. doi: 10.1021/acssuschemeng.7b02738 [5] 孙墨杰, 艾玉鑫, 王世杰. MoS2-PAN吸附膜对铜离子的吸附性能影响规律[J]. 硅酸盐通报, 2019, 8: 2497-2505. [6] SAIMA N, MARRIUM T. Treatment of textile wastewater containing acid dye using novel polymeric graphene oxide nanocomposites (GO/PAN, GO/PPy, GO/PSty)[J]. Journal of Materials Research and Technology, 2021, 14: 25-35. doi: 10.1016/j.jmrt.2021.06.007 [7] 田金光, 高小媛. 磁性氧化石墨烯材料的制备及其对重金属离子的吸附研究[J]. 应用化工, 2020, 11: 2812-2815. doi: 10.3969/j.issn.1671-3206.2020.11.031 [8] PEI J X, HUANG L. Inhibitory effect of hydrogen ion on the copper ions separation from acid solution across graphene oxide membranes[J]. Separation and Purification Technology, 2019, 209: 651-658. [9] BHARATH G, ALHSEINATl E, PONPANDIAN N, et al. Development of adsorption and electrosorption techniques for removal of organic and inorganic pollutants from wastewater using novel magnetite/porous graphene-based nanocomposites[J]. Separation and Purification Technology, 2017, 188: 206-218. doi: 10.1016/j.seppur.2017.07.024 [10] CHIMPALEE N, CHIMPALEE D. Thorburn Burns Flow-injection spectrophotometric determination of copper using bis( cyclohexanone) oxalyldihydrazone[J]. Analytica Chimica Acta, 1995, 304: 97-100. doi: 10.1016/0003-2670(94)00564-3 [11] MOJTABA M, ABDOLREZA M. Fabrication of novel polyethersulfone based nanofiltration membrane by embedding polyaniline-co-graphene oxide nanoplates[J]. Korean Journal of Chemical Engineering, 2016, 33: 2674-2683. doi: 10.1007/s11814-016-0132-4 [12] WANG S J, QIN C. Enhanced supercapacitive performance of polyacrylonitrile derived hierarchical porous carbon via hybridizing with MoS2 nanosheets[J]. Journal of Energy Storage, 2021, 40: 102695. doi: 10.1016/j.est.2021.102695 [13] MOHAMED M. A, ALAA M. Preparation, characterization, and mechanical properties of polyacrylonitrile (PAN)/graphene oxide (GO) nanofibers[J]. Mechanics of Advanced Materials and Structures, 2018, 26: 346-351. [14] ZHANG X F, YANG S J. Advanced modifed polyacrylonitrile membrane with enhanced adsorption property for heavy metal ions[J]. Scientific Reports, 2018, 8: 1260-1268. doi: 10.1038/s41598-018-19597-3 [15] LIN Y X, CAI W P, TIAN X Y, et al. Polyacrylonitrile ferrous chloride composite porous nanofibers and their strong Cr-removal performance[J]. Journal of Materials Chemistry, 2011, 21(4): 991-997. doi: 10.1039/C0JM02334E [16] 杨焰. 氧化石墨烯功能材料的研制及其对铜、镍等离子吸附性能研究[D]. 长沙: 湖南大学, 2017. [17] DENG S, YU C X, NIU J F, et al. Microwave assisted synthesis of phosphorylated PAN fiber for highly efficient and enhanced extraction of U(VI) ions from water[J]. Chemical Engineering Journal, 2020, 392: 123815. doi: 10.1016/j.cej.2019.123815 [18] LIU D Y, NIU L L. Synthesis of poly(amidoamine) dendrimer-based dithiocarbamate magnetic composite for the adsorption of Co2+ from aqueous solution[J]. Journal of Materials Science:Materials in Electronics, 2019, 30: 1161-1174. doi: 10.1007/s10854-018-0385-2 [19] XU G, XIE Y, et al. Highly selective and efficient chelating fiber functionalized by Bis(2-pyridylmethyl)amino group for heavy metal ions[J]. Polymer Chemistry, 2016, 7: 376-385.