-
磷是导致水体富营养化的关键因素之一[1-3],如何有效控制水体磷含量是近些年来学者们的研究热点。湖泊磷的来源主要分为外源进入和内源释放,底泥是湖泊的重要组成部分,输入湖泊的外源磷经过一系列的物理、化学和生物作用会蓄积于底泥中。当外界环境条件发生变化时,蓄积于底泥中的磷会重新释放以内源磷的形式进入上覆水,因此,在目前外源磷逐步得到控制的条件下,有效抑制底泥中磷的释放成为了亟待解决的问题[4-7]。
目前底泥磷释放控制技术主要包括异位控制[8]和原位处理[9]。异位处理技术主要是疏浚技术,其是通过水力或机械方法挖除湖泊表层的污染底泥,清除污染水体的内源磷。我国的滇池草海、安徽巢湖、杭州西湖、瑞典的Trummen湖等均采用了该技术[10]。原位处理技术可分为化学处理、生物处理和稳定化处理。与异位处理技术相比,原位处理技术优点在于:可以避免疏浚过程中底泥悬浮致使大量磷向水体释放的问题,减少底泥异位时流失的污染物总量,降低污染物毒性及控制污染物迁移性,并且处理费用低[11],且原位控制技术可显著降低沉积物中各形态磷含量,抑制沉积物磷及其他污染物向上层水释放[12]。
净水厂污泥是给水处理厂在净水过程中产生的污泥,包括原水中的悬浮物质、有机物质等,以及处理过程中形成的如铝盐、铁盐等化学物质[13]。有研究[14-18]表明,净水污泥对磷具有优良的吸附效果。徐颖等[19]利用原始净水污泥为原料,其对磷的实际饱和吸附量为3.065 mg·g−1;马啸宙等[20]采用80 ℃烘干的净水污泥作为磷吸附材料,明确净水污泥对低浓度磷 (5 mg·g−1) 的最佳去除率为92.5%,理论饱和吸附量为3.47 mg·g−1。以上研究结果均说明净水污泥对磷具有一定的吸附能力。净水污泥在煅烧过程中其含有的铁、铝等元素会生成对应金属氧化物,可进一步提高净水污泥的吸附性能,而且通过煅烧可避免有机质对水体的影响[15-16,21]。本文使用经热改性处理后的净水污泥作为底泥改良材料,探讨了其对水体磷酸盐的吸附性能,并对比了不同WTS400-4投加量(0%、2.5%、5%、10%)对底泥内源磷形态分布的影响及吸附机制,以期为净水污泥资源化利用与水体内源磷控释提供参考。
热改性净水污泥对水体底泥磷的控释机制
Controlled release mechanism of phosphorus from water sediment by heat modified water purification sludge
-
摘要: 本研究以净水污泥为原料,通过400 ℃、4 h煅烧制备了热改性净水污泥。探讨了其对水体中磷酸盐的吸附特性,以及在不同投加量 (2.5%、5%、10%) 下热改性净水污泥对底泥中磷的控释及形态影响。同时结合SEM、BET等表征手段,探究了WTS400-4对底泥中磷的稳定机理。结果表明,WTS400-4相比WTS具有更发达的孔隙结构及比表面积,增强了对磷酸盐的吸附能力。吸附过程符合准二级动力学模型,Freundlich模型更适用于描述WTS400-4吸附磷酸盐的过程,其中参数n>1,说明WTS400-4对磷酸盐的吸附容易进行。WTS400-4的添加会使底泥中弱吸附态磷(NH4Cl-P)、氧化还原敏感态磷(BD-P)和有机磷(Org-P)等不稳定态磷向稳定的金属氧化物结合态磷(NaOH-rP)转变,且其转化量会随着WTS400-4投加量的增加而增加,有助于抑制底泥磷向上覆水释放。此外,WTS400-4的添加可降低底泥中WSP(水溶性磷)和Olsen-P (碳酸氢钠可提取磷)这2种生物有效磷含量。WTS400-4添加入底泥,一方面可以降低底泥中潜在活性磷和生物有效磷含量,降低底泥内源磷向上覆水释放的风险,另一方面可以通过WTS400-4的吸附作用直接去除间隙水中的磷,从而降低上覆水和间隙水之间的磷浓度梯度,进而抑制磷从间隙水向上覆水中释放。结果表明,WTS400-4可作为底泥改良剂用以控制水体和底泥的磷含量。Abstract: In this study, the heat modified water purification sludge (WTS400-4) was prepared by 400 ℃ and 4 h pyrolysis using water treatment sludge as raw material. The adsorption characteristics of phosphate in water and the effects of different dosage (2.5%, 5%, 10%) on the controlled release and the form of phosphate in the sediment were discussed. At the same time, combining with SEM, BET and other characterization methods, the stabilization mechanism of WTS400-4 on phosphorus in sediment was explored. The results showed that WTS400-4 had more developed pore structure and specific surface area than WTS, which strengthened the phosphate adsorption capacity. The adsorption process conformed to the quasi-second-order kinetic model. Freundlich model was more suitable to describe the phosphate adsorption process on WTS400-4, the parameter n higher than 1 indicated that the WTS400-4 was easy to adsorb phosphate. The addition of WTS400-4 could cause the transformation of the weakly adsorbed phosphorus (NH4Cl-P), redox-sensitive phosphorus (BD-P), organophosphorus (Org-P) and other readily released phosphorus to stable metal oxide bound phosphorus (NaOH-rP) in sediment, and the conversion amount increased with the increase of WTS400-4 dosage, which could contribute to inhibiting the release of phosphorus from the sediment. In addition, the addition of WTS400-4 could reduce the contents of WSP(water-soluble phosphorus) and Olsen-P (sodium bicarbonate extractable phosphorus) in the sediment. Adding WTS400-4 to the sediment, on the one hand, could reduce the contents of potential active phosphorus and bioavailable phosphorus in the sediment and reduce the risk of endogenous phosphorus release from the sediment to the overlying water. On the other hand, the phosphorus in interstitial water could be directly removed through the adsorption on WTS400-4, so as to reduce the phosphorus concentration gradient between overlying water and interstitial water and inhibit the release of phosphorus from interstitial water to overlying water. The results showed that WTS400-4 could be used as a sediment amendment to control the phosphorus content in water and sediment.
-
表 1 净水污泥和热改性净水污泥的元素含量占比
Table 1. Element content ratio of WTS and WTS400-4
样品 C/% O/% Si/% Al/% K/% Fe/% Ca/% Mg/% Na/% WTS 35.03 47.96 7.26 5.59 0.57 2.59 0.94 0.47 1.58 WTS400-4 9.90 52.95 15.21 11.50 1.18 4.34 1.05 1.75 2.11 表 2 Langmuir和Freundlich吸附等温模型拟合参数
Table 2. Fitting parameters of Langmuir and Freundlich adsorption isothermal models
温度/ ℃ Langmuir模型 Freundlich模型 qm/(mg·g−1) KL/(L·mg−1) R2 n KF/(mg·g−1) R2 30 20.383 3 0.078 2 0.789 1 2.885 0 4.266 6 0.947 2 40 21.374 6 0.731 7 0.768 3 2.959 0 4.526 2 0.928 7 50 23.324 1 0.742 2 0.797 5 2.829 9 4.713 4 0.939 0 表 3 WTS400-4吸附磷酸盐的热力学参数
Table 3. Thermodynamic parameters of phosphate adsorption by WTS400-4
温度/K ΔGθ/(kJ·mol−1) ΔHθ/(kJ·mol−1) ΔSθ/(J·(mol·K)−1) 303.15 −10.55 4.062 25.484 313.15 −11.34 323.15 −12.02 表 4 准一级、准二级动力学拟合参数
Table 4. Quasi-first order and quasi-second order kinetic fitting parameters
磷溶液初始
浓度/(mg·L−1)准一级动力学模型 准二级动力学模型 k1/(min−1) qe,cal/(mg·g−1) R2 k2/(g·(mg·min)−1) qe,cal/(mg·g−1) R2 20 0.001 2 2.968 0 0.884 6 0.002 1 7.869 0.998 5 50 0.002 1 9.519 0 0.896 0 0.000 7 12.930 0.995 8 80 0.002 4 14.703 2 0.979 2 0.000 3 18.054 0.999 3 表 5 颗粒内扩散模型拟合参数
Table 5. Fitting parameters of the intra-particle diffusion model
磷溶液初始
浓度/(mg·L−1)颗粒内扩散模型 第1阶段 第2阶段 第3阶段 C1 k1 R2 C2 k2 R2 C3 k3 R2 20 1.732 4 0.821 6 0.990 6 3.251 7 0.400 3 0.986 3 13.216 3 0.072 0 0.912 4 50 0.041 0 0.799 1 0.935 7 4.400 9 0.220 9 0.991 4 8.973 7 0.070 7 0.991 6 80 0.605 0 0.588 1 0.951 8 4.249 6 0.102 9 0.968 8 6.149 2 0.031 8 0.987 3 表 6 不同实验组各形态磷的含量
Table 6. Contents of phosphorus forms in different control groups mg·kg−1
样品 NH4Cl-P BD-P Org-P NaOH-rP HCl-P Res-P 空白 4.40 21.56 46.30 120.77 497.75 157.80 WTS2.5 2.22 16.27 35.71 189.55 493.53 162.35 WTS5 2.02 11.64 23.81 247.08 501.16 165.08 WTS10 0.89 12.30 19.84 328.44 492.46 168.66 -
[1] 张博, 李永峰, 姜霞, 等. 环境治理工程对蠡湖水体中磷空间分布的影响[J]. 中国环境科学, 2013, 33(7): 1271-1279. [2] 袁探, 华玉妹, 朱端卫, 等. 外源硫酸盐对武汉南湖表层沉积物磷形态的作用[J]. 中国环境科学, 2012, 32(4): 666-673. doi: 10.3969/j.issn.1000-6923.2012.04.015 [3] 余居华, 钟继承, 张银龙, 等. 湖泊疏浚对沉积物再悬浮及磷迁移影响的模拟研究[J]. 环境科学, 2012, 33(10): 3368-3375. doi: 10.13227/j.hjkx.2012.10.027 [4] 刘静静, 董春颖, 宋英琦, 等. 杭州西湖北里湖沉积物氮磷内源静态释放的季节变化及通量估算[J]. 生态学报, 2012, 32(24): 7932-7939. [5] JIANG X, JIN X C, YAO Y, et al. Effects of biological activity, light, temperature and oxygen on phosphorus release processes at the sediment and water interface of Taihu Lake, China[J]. Water Research, 2008, 42(8/9): 2251-2259. [6] KIM L H, CHOI E, STENSTROM M K. Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments[J]. Chemosphere, 2003, 50(1): 53-61. doi: 10.1016/S0045-6535(02)00310-7 [7] 秦伯强, 杨柳燕, 陈非洲, 等. 湖泊富营养化发生机制与控制技术及其应用[J]. 科学通报, 2006, 51(16): 1857-1866. doi: 10.3321/j.issn:0023-074X.2006.16.001 [8] 寇丹丹, 张义, 黄发明, 等. 水体沉积物磷控制技术[J]. 环境科学与技术, 2012, 35(10): 81-85. doi: 10.3969/j.issn.1003-6504.2012.10.018 [9] 李安定, 张义, 周北海, 等. 富营养化湖泊沉积物磷原位控制技术[J]. 水生生物学报, 2014, 38(2): 370-374. doi: 10.7541/2014.52 [10] HOLEREN C W J, TAGGART J. Managing Lakes and Reservoirs[M]. 3rd edition. Prep. by N. Am. Lake Manage Soc and Terrene Inst. in Coop with US EPA. 2001. [11] US EPA. Selecting remediation techniques for contaminated sediment, EPA 823-B93-001[R]. Office of Water, Washington, D C. 1993 [12] US EPA. Contaminated sediments: relevant Statutes and EPA Program Activities, EPA 506/6-90/003[R]. Office of Water, Washington, D C. 1990 [13] 戚海雁, 何品晶, 章骅. 给水厂排泥水及污泥的处置[J]. 上海环境科学, 2002, 21(7): 442-443. [14] 帖靖玺, 赵莉, 张仙娥. 净水厂污泥的磷吸附特性研究[J]. 环境科学与技术, 2009, 32(6): 149-151,164. doi: 10.3969/j.issn.1003-6504.2009.06.034 [15] 方晖, 张易培, 陈丁丁, 等. 净水厂聚合氯化铝铁污泥对污水中磷的吸附作用[J]. 工业用水与废水, 2013, 44(3): 17-20. doi: 10.3969/j.issn.1009-2455.2013.03.005 [16] WANG C H, GAO S J, PEI Y S, et al. Use of drinking water treatment residuals to control the internal phosphorus loading from lake sediments: laboratory scale investigation[J]. Chemical Engineering Journal, 2013, 225: 93-99. doi: 10.1016/j.cej.2013.03.074 [17] IPPOLITO J A, BARBARICK K A, ELLIOTT H A. Drinking water treatment residuals: a review of recent uses[J]. Journal of Environmental Quality, 2011, 40(1): 1-12. doi: 10.2134/jeq2010.0242 [18] WANG C H, YUAN N N, PEI Y S, et al, Aging of aluminum/iron-based drinking water treatment residuals in lake water and their association with phosphorus immobilization capability[J]. Journal of Environmental, Management, 2015, 119: 178-185. [19] 徐颖, 叶志隆, 叶欣, 等. 给水污泥对水中磷的吸附性能[J]. 环境工程学报, 2018, 12(3): 712-719. doi: 10.12030/j.cjee.201708032 [20] 马啸宙, 魏东洋, 马宏林, 等. 基于给水污泥吸附水溶液中磷的影响因素[J]. 环境工程学报, 2015, 9(8): 3659-3666. doi: 10.12030/j.cjee.20150812 [21] RYDIN E. Potentially mobile phosphorus in Lake Erken sediment[J]. Water Research, 2000, 34(7): 2037-2042. doi: 10.1016/S0043-1354(99)00375-9 [22] ZHOU Q X, GIBSON C E, ZHU Y M. Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in China and the UK[J]. Chemosphere, 2001, 42(2): 221-225. doi: 10.1016/S0045-6535(00)00129-6 [23] SINGH V K, KUMAR E A. Measurement and analysis of adsorption isotherms of CO2 on activated carbon[J]. Applied Thermal Engineering, 2016, 97: 77-86. doi: 10.1016/j.applthermaleng.2015.10.052 [24] 张增强, 张一平. 几个吸附等温模型热力学参数的计算方法[J]. 西北农业大学学报, 1998, 26(2): 94-98. [25] LIN J W, WANG H, ZHAN Y H, et al. Evaluation of sediment amendment with zirconium-reacted bentonite to control phosphorus release[J]. Environmental Earth Sciences, 2016, 75(11): 942. doi: 10.1007/s12665-016-5744-9 [26] ZILIUS M, GIORDANI G, PETKUIENE J, et al. Phosphorus mobility under short-term anoxic conditions in two shallow eutrophic coastal systems ( Curonian and Sacca di Goro lagoons)[J]. Estuarine, Coastal and Shelf Science, 2015, 164: 134-146. doi: 10.1016/j.ecss.2015.07.004 [27] YANG L, WEI J, LIU Z, et al. Material prepared from drinking waterworks sludge as adsorbent for ammonium removal from wastewater[J]. Applied Surface Science, 2015, 330: 228-236. doi: 10.1016/j.apsusc.2015.01.017 [28] NGUYEN M D, ADHIKARI S, MALLYA D S, et al. Reuse of aluminium-based water treatment sludge for phosphorus adsorption: Evaluating the factors affecting andcorrelation between adsorption and sludge properties[J]. Environment technology and innovation, 2022, 27: 102717-102717. doi: 10.1016/j.eti.2022.102717 [29] Totlani K, Mehta R, Mandavgane S A. Comparative study of adsorption of Ni(II) on RHA and carbon embedded silica obtained from RHA[J]. Chemical Engineering Journal, 2012, 181: 376-386. [30] Zhu X D, Liu Y C, Qian F, et al. Preparation of magnetic porous carbon from waste hydrochar by simultaneous activation and magnetization for tetracycline removal[J]. Bioresource Technology, 2014, 154: 209-214. doi: 10.1016/j.biortech.2013.12.019 [31] 郑晓青, 韦安磊, 张一璇, 等. 铁锰氧化物/生物炭复合材料对水中硝酸根的吸附特性[J]. 环境科学, 2018, 39(3): 1220-1232. [32] 崔婉莹, 艾恒雨, 张世豪, 等. 改性吸附剂去除废水中磷的应用研究进展[J]. 化工进展, 2020, 39(10): 4210-4226. [33] ZHANG J, YAN Z, JING O. Highly dispersed sepiolite-based organic modified nanofibers for enhanced adsorption of Congo red[J]. Applied Surface Science, 2018, 157: 76-85. [34] 仇付国, 孙瑶, 陈丽霞. 给水厂铝污泥特性分析及吸附氮磷性能试验[J]. 环境工程, 2016, 34(04): 54-59. [35] 陆燕勤, 朱丽, 何昭菊, 等. 沸石负载氧化铁吸附剂吸附除磷研究[J]. 环境工程, 2015, 33(4): 48-52. [36] FAN S S, WANG Y, WANG Z, et al. Removal of methylene blue from aqueous solution by sewage sludge derived biochar: Adsorption kinetics, equilibrium, thermodynamics and mechanism[J]. Journal of Environmental Chemical Engineering, 2017, 5(1): 601-611. doi: 10.1016/j.jece.2016.12.019 [37] FAN S, TANG J, WANG Y, et al. Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions: kinetics, isotherm, thermodynamic and mechanism[J]. Journal of Molecular Liquids, 2016, 220: 432-441. doi: 10.1016/j.molliq.2016.04.107 [38] ARAMI M, LIMAEE N Y, MAHMOODI N M, et al. Evaluation of the adsorption kinetics and equilibrium for the potential removal of acid dyes using a biosorbent[J]. Chemical Engineering Journal, 2008, 139(1): 2-10. doi: 10.1016/j.cej.2007.07.060 [39] 望雪, 程豹, 杨正健, 等. 澜沧江流域沉积物间隙水-上覆水营养盐特征与交换通量分析[J]. 环境科学, 2018, 39(5): 2126-2134. [40] 于胜楠, 李勇, 李大鹏, 等. 灼烧净水污泥对外源磷的吸附和固定作用[J]. 环境科学, 2017, 38(9): 3962-3969. [41] 朱培颖, 李大鹏, 于胜楠. 灼烧净水污泥投加方式对磷吸附和磷形态的影响[J]. 环境科学, 2017, 38(5): 1957-1964. doi: 10.13227/j.hjkx.201610120 [42] 李乐, 王圣瑞, 焦立新, 等. 滇池柱状沉积物磷形态垂向变化及对释放的贡献[J]. 环境科学, 2016, 37(9): 3384-3393. [43] LAAKSO J, UUSITALO R, HEIKKINEN J, et al. Phosphorus in agricultural constructed wetland sediment is sparingly plant available[J]. Journal of Plant Nutrition and Soil Science, 2017, 180(5): 554-562. doi: 10.1002/jpln.201700062 [44] WANG C H, GAO S J, WANG T X, et al. Effectiveness of sequential thermal and acid activation on phosphorus removal by ferric and alum water treatment residuals[J]. Chemical Engineering Journal, 2011, 172(2): 885-891.