-
随着工业发展和人民生活水平提高,由氮素过量排放引起的水体富营养化成为一个亟待解决的问题,而传统硝化-反硝化生物脱氮工艺呈现出能耗大、需外加碳源及污泥产量高等不可持续特点。厌氧氨氧化(Anammox)工艺以其经济、高效等特点在生物脱氮领域备受关注,该技术主要是依靠一类浮霉菌门的自养厌氧氨氧化菌(AnAOB)以NH4+-N和NO2−-N为底物反应生成N2的过程,理论总氮(total nitrogen,TN)去除率可达90%左右[1]。然而,Anammox工艺尾水中仍有近10%的氮素以NO3−-N形式存在。为了进一步提高Anammox工艺运行效能,同步厌氧氨氧化耦合异养反硝化(simultaneous anammox and denitrification,SAD)、同步亚硝化、厌氧氨氧化耦合异养反硝化(simultaneous partial nitrification, anammox and denitrification,SNAD)等工艺技术层出不穷[2-4]。而对于主流城市污水而言,进水氮素主要以氨氮形式存在,因此SNAD工艺适用性更强,该技术主要依靠好氧氨氧化菌(AerAOB)、AnAOB协调作用实现Anammox反应,并通过引入反硝化菌(Denitrifying bacteria,DNB)进一步削减NO3−-N实现脱氮除碳的工艺过程。
值得注意的是,AnAOB生长周期较长且易于流失,是Anammox工艺启动的技术瓶颈,从而直接影响SNAD工艺启动过程。颗粒污泥是一种固定化微生物聚合体,具有密实的结构和良好的沉降性能,可以实现AnAOB的有效持留[5]。范丹等[6]在序批式反应器(sequencing batch reactor,SBR)中以1.1 mm的Anammox颗粒污泥成功启动SNAD工艺,启动时间为37 d。此外,为了强化AnAOB富集以加速颗粒污泥形成,膜生物反应器(membrane bioreactor,MBR)可以作为Anammox及SNAD颗粒污泥工艺启动的有效方式[7]。LIU等[8]采用MBR强化AnAOB富集并成功加速颗粒污泥的形成(平均颗粒粒径为0.7 mm)。张肖静等[9]采用MBR经过100 d成功启动SNAD颗粒污泥工艺,TN去除率可达98%。与传统MBR工艺类似,SNAD-MBR工艺启动过程中也不可避免地会出现膜污染问题,而颗粒污泥性质会直接影响膜污染行为特性。ZHUO等[10]发现在Anammox颗粒污泥体系中紧密结合型胞外聚合物(tightly bound-EPS,TB-EPS)含量以及EPS中腐殖质含量与膜污染速率之间有较好的相关性。LI等[7]研究表明随着Anammox颗粒中小粒径组分减少及平均粒径增大,膜污染得到显著缓解。XING等[11]认为Anammox颗粒污泥体系中溶解性微生物产物(soluble microbial products,SMP)中的蛋白质组分是造成膜污染的主要因素,而郭佳[12]研究结果表明EPS是SNAD-MBR工艺膜污染的关键因子。
可见,在以往的研究中对于Anammox-MBR及其系列工艺中膜污染关键因子尚无统一认识;此外,由于SNAD工艺启动过程复杂性,SNAD-MBR工艺的颗粒污泥特性与膜污染行为的动态变化及其两者之间的
相关性尚不明晰,且针对此工艺的膜污染预测模型鲜有报道。本研究在系统分析SNAD-MBR工艺启动过程中颗粒污泥特性动态变化的基础上,探究其与膜污染速率之间的相关性,通过统计学手段识别膜行为的关键因子并建立膜污染预测模型,以期为SNAD-MBR工艺的优化运行及推广应用提供理论基础与技术支持。
SNAD-MBR工艺启动过程中颗粒污泥特性变化及其对膜污染的影响
Changes in granular sludge characteristics and their effects on membrane fouling during start-up of SNAD-MBR process
-
摘要: 采用升流式微氧污泥床膜生物反应器启动同步亚硝化、厌氧氨氧化耦合异养反硝化(SNAD)工艺,考察了颗粒污泥性质与膜污染行为的动态变化,并通过统计学手段评估了启动中颗粒污泥特性与膜污染速率之间的相关性。结果表明:由厌氧氨氧化工艺(Anammox)历经全程自养脱氮工艺(CANON)启动SNAD工艺过程中,颗粒污泥浓度(MLSS)、胞外聚合物(EPS)、溶解性微生物产物(SMP)及EPSp/EPSc比值呈现增加趋势,而SMPp/SMPc比和污泥容积指数(SVI)逐渐降低;傅里叶变换红外(FT-IR)和三维荧光谱(3D-EEM)分析结果表明,颗粒污泥蛋白质疏水性逐渐增强,且色氨酸类物质在污泥颗粒化过程中起到重要作用;此外,膜污染速率由1.21 L·(m2·h2·Pa)−1下降至1.08 L·(m2·h2·Pa)−1,这主要是由于EPSp/EPSc比增加,促使颗粒污泥粒径增加,从而减缓膜污染所致;统计学结果进一步表明,相比其他颗粒污泥参数(MLSS、SVI、EPS及SMP),SMPp/SMPc比与膜污染速率之间呈现较强的显著正相关,SMPp/SMPc比可作为膜污染速率预测参数,预测模型为Fr=1.638SMPp/SMPc−1.398。Abstract: The simultaneous nitritation, anammox, and denitrification (SNAD) process was started up using an upflow microaerobic sludge bed-membrane bioreactor to investigate the dynamic changes of granular sludge properties and membrane fouling behavior, and assess the correlation between granular sludge properties and membrane fouling rate by the statistical principle. The results showed that during SNAD start-up process as shifting from anaerobic ammonium oxidation (Anammox) and completely autotrophic nitrogen removal over nitrite (CANON) processes, the mixed liquor suspended solids (MLSS), extracellular polymeric substances (EPS), soluble microbial production (SMP) and EPSp/EPSc ratio of granular sludge showed increasing trends, whereas SMPp/SMPc ratio and sludge volume index (SVI) decreased gradually; Fourier transform infrared spectroscopy (FT-IR) and three-dimensional excitation-emission matrix (3D-EEM) spectra analysis results showed that the protein hydrophobicity of granular sludge increased gradually, and tryptophan-like substances played important roles in sludge granulation. In addition, the membrane fouling rate decreased from 1.21 L·(m2·h2·Pa)−1 to 1.08 L·(m2·h2·Pa)−1, which was mainly owing to the increased the particle size of granular sludge resulted from the increased EPSp/EPSc ratio; statistical results further revealed that, compared with other granular sludge parameters (MLSS, SVI, EPS and SMP), SMPp/SMPc ratio had a stronger positive correlation with membrane fouling rate; SMPp/SMPc ratio could be used as a prediction parameter of membrane fouling rate, and the corresponding prediction was Fr=1.638SMPp/SMPc-1.398.
-
Key words:
- SNAD process /
- granular sludge /
- membrane bioreactor /
- sludge properties /
- membrane fouling
-
表 1 不同启动阶段SNAD工艺运行条件
Table 1. Operating conditions of SNAD process during different start-up phases
阶段 时间/d HRT/h DO/(mg·L−1) NH4+-N/(mg·L−1) NO2--N/(mg·L−1) COD/(mg·L−1) 曝气/非曝气/(min:min) TN去除率/% COD去除率/% Anammox Ⅰ 1~9 24 ~0.02 52.19±1.43 67.10±0.54 — — 80.69 — Ⅱ 10~18 17 ~0.02 50.79±1.28 66.39±0.45 — — 81.03 — Ⅲ 19~28 10 ~0.02 50.77±0.61 66.47±0.49 — — 80.89 CANON Ⅳ 29~46 33~11 0.6~1.0 44.97±3.98 — — 1:3 66.76 — Ⅴ 47~60 10 0.3~0.8 50.05±1.39 — — 1:5 80.32 — Ⅵ 61~77 10 0.5~0.8 49.68±0.96 — — 1:5 84.62 — SNAD Ⅶ 78~98 10 0.3~0.6 50.24±0.99 — 26.04±1.59 1:5 96.78 84.01 表 2 不同启动阶段颗粒污泥蛋白质二级结构占比
Table 2. Proportions of protein secondary structures of membrane foulants during different start-up phases
阶段 聚集链(1 610~1 625 cm−1)/% α-螺旋(1 648~1 657 cm−1)/% β-折叠(1 630~1 640 cm−1)/% 无规则卷曲(1 640~1 645 cm−1)/ % α-螺旋/(β-折叠+无规则卷曲) Anammox 14.61 15.71 13.48 15.40 0.544 CANON 16.15 15.97 14.08 15.49 0.540 SNAD 13.59 15.19 13.68 14.76 0.534 -
[1] LAN C J, KUMAR M, WANG C C, et al. Development of simultaneous partial nitrification, anammox and denitrification (SNAD) process in a sequential batch reactor[J]. Bioresource Technology, 2011, 102(9): 5514-5519. doi: 10.1016/j.biortech.2010.11.024 [2] XU D, YING S, WANG Y, et al. A novel SAD process: Match of anammox and denitrification[J]. Water Research, 2021, 193: 116874. doi: 10.1016/j.watres.2021.116874 [3] LI J, QIANG Z, YU D, et al. Performance and microbial community of simultaneous anammox and denitrification (SAD) process in a sequencing batch reactor[J]. Bioresource Technology, 2016, 218: 1064-1072. doi: 10.1016/j.biortech.2016.07.081 [4] ZHENG Z, HUANG S, BIAN W, et al. Enhanced nitrogen removal of the simultaneous partial nitrification, anammox and denitrification (SNAD) biofilm reactor for treating mainstream wastewater under low dissolved oxygen (DO) concentration[J]. Bioresource Technology, 2019, 283: 213-220. doi: 10.1016/j.biortech.2019.01.148 [5] GAO D, LIU L, LIANG H, et al. Aerobic granular sludge: characterization, mechanism of granulation and application to wastewater treatment[J]. Critical Reviews in Biotechnology, 2011, 31(2): 137-152. doi: 10.3109/07388551.2010.497961 [6] 范丹, 李冬, 梁瑜海, 等. 生活污水SNAD颗粒污泥快速启动及脱氮性能研究[J]. 中国环境科学, 2016, 36(11): 8. doi: 10.3969/j.issn.1000-6923.2016.11.015 [7] LI Z, XU X, SHAO B, et al. Anammox granules formation and performance in a submerged anaerobic membrane bioreactor[J]. Chemical Engineering Journal, 2014, 254: 9-16. doi: 10.1016/j.cej.2014.04.068 [8] LIU T, MA B, CHEN X, et al. Evaluation of mainstream nitrogen removal by simultaneous partial nitrification, anammox and denitrification (SNAD) process in a granule-based reactor[J]. Chemical Engineering Journal, 2017, 327: 973-981. doi: 10.1016/j.cej.2017.06.173 [9] 张肖静, 李冬, 梁瑜海, 等. MBR-SNAD工艺处理生活污水效能及微生物特征[J]. 哈尔滨工业大学学报, 2015, 47(8): 87-91. doi: 10.11918/j.issn.0367-6234.2015.08.017 [10] ZHOU M, SHI Q, WANG Y. Application of hydrophilic modified nylon fabric membrane in an anammox-membrane bioreactor: performance and fouling characteristics[J]. Environmental Science and Pollution Research, 2022, 29(4): 5330-5344. doi: 10.1007/s11356-021-15901-3 [11] XING F, WANG T, YUN H, et al. Start-Up and Operation of Anammox Process in a Granular Sludge Membrane Bioreactor (Gsmbr)[J]. Available at SSRN 4076081. [12] 郭佳. 升流式微氧反应器中MBR膜污染特征及机制研究[D]. 北京: 北京化工大学, 2019. [13] 国家环保局. 水和废水监测分析方法: 第四版[J]. 北京:中国环境科学出版社, 2006: 210-276. [14] VOLCKE E I P, PICIOREANU C, DE BAETS B, et al. The granule size distribution in an anammox‐based granular sludge reactor affects the conversion—Implications for modeling[J]. Biotechnology and Bioengineering, 2012, 109(7): 1629-1636. doi: 10.1002/bit.24443 [15] 张定定. 印染废水深度处理过程中污染物转化规律的研究[D]. 上海: 东华大学, 2014. [16] WANG W, YAN Y, ZHAO Y, et al. Characterization of stratified EPS and their role in the initial adhesion of anammox consortia[J]. Water Research, 2020, 169: 115223. doi: 10.1016/j.watres.2019.115223 [17] CAMPO R, LUBELLO C, LOTTI T, et al. Aerobic Granular Sludge–Membrane BioReactor (AGS–MBR) as a Novel Configuration for Wastewater Treatment and Fouling Mitigation: A Mini-Review[J]. Membranes, 2021, 11(4): 261. doi: 10.3390/membranes11040261 [18] LI J, LIU Y, LI X, et al. Reactor performance and membrane fouling of a novel submerged aerobic granular sludge membrane bioreactor during long-term operation[J]. Journal of Water Reuse and Desalination, 2019, 9(1): 1-9. doi: 10.2166/wrd.2017.019 [19] ANJUM F, KHAN I M, KIM J, et al. Trends and progress in AnMBR for domestic wastewater treatment and their impacts on process efficiency and membrane fouling[J]. Environmental Technology & Innovation, 2021, 21: 101204. [20] YAN L, LIU Y, WEN Y, et al. Role and significance of extracellular polymeric substances from granular sludge for simultaneous removal of organic matter and ammonia nitrogen[J]. Bioresource Technology, 2015, 179: 460-466. doi: 10.1016/j.biortech.2014.12.042 [21] ZHU L, DAI X, ZHOU J, et al. The stability of aerobic granular sludge under 4-chloroaniline shock in a sequential air-lift bioreactor (SABR)[J]. Bioresource Technology, 2013, 140: 126-130. doi: 10.1016/j.biortech.2013.04.017 [22] LIN Y, LIAO Y, YU Z, et al. A study on co-pyrolysis of bagasse and sewage sludge using TG-FTIR and Py-GC/MS[J]. Energy Conversion and Management, 2017, 151: 190-198. doi: 10.1016/j.enconman.2017.08.062 [23] YIN C, MENG F, CHEN G H. Spectroscopic characterization of extracellular polymeric substances from a mixed culture dominated by ammonia-oxidizing bacteria[J]. Water Research, 2015, 68: 740-749. doi: 10.1016/j.watres.2014.10.046 [24] SUH H H, KWON G S, LEE C H, et al. Characterization of bioflocculant produced by Bacillus sp. DP-152[J]. Journal of Fermentation and Bioengineering, 1997, 84(2): 108-112. doi: 10.1016/S0922-338X(97)82537-8 [25] JIA F, YANG Q, LIU X, et al. Stratification of extracellular polymeric substances (EPS) for aggregated anammox microorganisms[J]. Environmental Science & Technology, 2017, 51(6): 3260-3268. [26] HOU X, LIU S, ZHANG Z. Role of extracellular polymeric substance in determining the high aggregation ability of anammox sludge[J]. Water Research, 2015, 75: 51-62. doi: 10.1016/j.watres.2015.02.031 [27] FANG F, YANG M M, WANG H, et al. Effect of high salinity in wastewater on surface properties of anammox granular sludge[J]. Chemosphere, 2018, 210: 366-375. doi: 10.1016/j.chemosphere.2018.07.038 [28] ZHU L, ZHOU J H, LV M L, et al. Specific component comparison of extracellular polymeric substances (EPS) in flocs and granular sludge using EEM and SDS-PAGE[J]. Chemosphere, 2015, 121: 26-32. doi: 10.1016/j.chemosphere.2014.10.053 [29] WANG B B, PENG D C, HOU Y P, et al. The important implications of particulate substrate in determining the physicochemical characteristics of extracellular polymeric substances (EPS) in activated sludge[J]. Water Research, 2014, 58: 1-8. doi: 10.1016/j.watres.2014.03.060 [30] SHEN L, LEI Q, CHEN J R, et al. Membrane fouling in a submerged membrane bioreactor: Impacts of floc size[J]. Chemical Engineering Journal, 2015, 269: 328-334. doi: 10.1016/j.cej.2015.02.002 [31] 宋志伟, 曹雯雯, 王秋旭, 等. 好氧颗粒污泥对膜生物反应器污泥性能的影响[J]. 环境工程学报, 2014, 8(9): 3725-3730. [32] IORHEMEN O T, HAMZA R A, TAY J H. Membrane fouling control in membrane bioreactors (MBRs) using granular materials[J]. Bioresource Technology, 2017, 240: 9-24. doi: 10.1016/j.biortech.2017.03.005 [33] IORHEMEN O T, HAMZA R A, ZAGHLOUL M S, et al. Aerobic granular sludge membrane bioreactor (AGMBR): Extracellular polymeric substances (EPS) analysis[J]. Water Tesearch, 2019, 156: 305-314. [34] 疏童. 浸没式膜生物反应器处理番茄酱加工废水及膜污染研究[D]. 合肥: 合肥工业大学, 2018.